Advertisement

Influence of Monomer Polarity on Particle Formation in Emulsion Polymerization

  • N. Sütterlin

Summary

The particle numbers N of some polyacrylates and polymethacrylates are measured as a function of the Na-dodecyl sulfate concentration in a range of four magnitudes and it was tried to give an interpretation of the experimental curves, For styrene the theoretical value x = 0.6 of the relationship N ∝ Sx is found considerably above CMC. At low soap concentrations, x varies within a relatively narrow SDS range. With less polar monomers particularly high values of x are found just below CMC. This behavior may be indicative of a second mechanism of particle formation. Above CMC x decreases with increasing monomer polarity. One of the reasons is probably that the agglomeration tendency increases with the polarity. This increased agglomeration may be partly due to the lower soap equilibrium concentration at the interface of polar polymers.

Keywords

Particle Number Particle Formation Emulsion Polymerization Latex Particle Methyl Acrylate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. V. Smith and R. H. Ewart, J. Chem. Phys. 16, 592 (1948).Google Scholar
  2. 2.
    E. Bartholomé, H. Gerrens, R. Herbeck and N. M. Weitz,Z. Elektrochem. 60, 334 (1956).Google Scholar
  3. 3.
    W. D. Harkins, J. Chem, Phys. 13, 381 (1945)CrossRefGoogle Scholar
  4. W. D. Harkins, J. Chem, Phys.14, 47 (1946)Google Scholar
  5. W. D. Harkins, J. Am. Chem. Soc. 69, 1428 (1947).CrossRefGoogle Scholar
  6. 4.
    R. M. Fitch and C. H. Tsai, Polymer Colloids, R. M. Fitch, ed. Pergamon, N.Y. 1971 pp. 73–102.Google Scholar
  7. R. M. Fitch and C. H. Tsai, Polymer Letters 8, 703 (1970).CrossRefGoogle Scholar
  8. 5.
    C. P. Roe, Ind. Eng. Chem. 60, 20 (1968).Google Scholar
  9. 6.
    H. Gerrens, Dechema-Monogr. 49, 53 (1964).Google Scholar
  10. 7.
    A. S. Dunn and P. A. Taylor, Makromol, Chem. 83, 207 (1965).CrossRefGoogle Scholar
  11. 8.
    H. Lange, Kolloid Z. Z. Polym., 223, 24 (1968).CrossRefGoogle Scholar
  12. 9.
    G. W. Ceska, J. Appl. Polymer Sci. 18, 427 (1974).Google Scholar
  13. 10.
    Y. Chungli, J. W. Goodwin and R. H. Ottewill, Progr. Colloid Polymer Sci. 60, 163 (1976).CrossRefGoogle Scholar
  14. 11.
    B. W. Barry and R. Wilson, Colloid Polymer Sci. 256, 44 (1978).CrossRefGoogle Scholar
  15. 12.
    A. V. Zuikov, A. I. Vasilenko, V. I. Yeliseyeva, Vysokomol. Soedin, 18, Ser. B, 707 (1976).Google Scholar
  16. (comp. V.I. Yeliseyeva and A. V. Zuikov, Polym. Preprints 16, 143 (1975).Google Scholar
  17. J. L. Gardon in C. E. Schildknecht, Polymerization Processes, John Wiley a. Sons Vol. XXIX, Chap. 6, S. 180.Google Scholar
  18. 14.
    N. Sütterlin, H.-J. Kurth and G. Markert, Makromol. Chem. 177, 1549 (1976).Google Scholar
  19. 15.
    T. R. Paxton, J. Colloid Interface Sci. 31, 1 (1969).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • N. Sütterlin
    • 1
  1. 1.Röhm GmbHDarmstadtGermany

Personalised recommendations