Coagulation of Amphoteric Latex Colloids Reversibility and Specific Ion Effects

  • T. W. Healy
  • A. Homola
  • R. O. James
  • R. J. Hunter


Coagulation studies of amphoteric latex sols of various i.e.p. values in LiNO3, KNO3 and CsNO3 solutions are reported for a wide range of salt concentrations and pH. Three different techniques for the study of coagulation phenomena all indicate reversibility, in that sols coagulated by pH or salt are able to be redispersed. K+ and Li counter ions are able to stabilize these sols in the high salt concentration region. With NO 3 - and Cs+, the expected narrow zone of coagulation at low salt (i.e.p. coagulation) expands into the usual broad coagulation zone at high salt, where coagulation is observed at all pH values. The stabilizing effect of Li and K+ counter ions is attributed to a hydration barrier at the interface.


Coagulation Zone Latex Suspension Australian Research Grant Committee Classical DLVO Theory Coagulation Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B.V. Derjaguin and L.D. Landau, Acta Physicochem. USSR ,1941, 14, 633.Google Scholar
  2. 2.
    E.J.W. Verwey and J.Th. G. Overbeek, Theory of the Stability of Lyophobiß Colloids(Elsevier ,New York, 1948).Google Scholar
  3. 3.
    D. Chan, J.W. Perram, L.R. White and T.W. Healy, J.C.S. Faraday I ,1975, 71, 1046.Google Scholar
  4. 4.
    D. Chan, T.W. Healy and L.R. White, J.C.S. Faraday I 1976, 72, 2844.Google Scholar
  5. 5.
    A. Homola and R.O. James, J. Colloid Interface Sci. ,1977, 59, 123.CrossRefGoogle Scholar
  6. 6.
    F. Dumont and A. Watillon, Disc. Faraday Soc. ,1971, 52, 352.CrossRefGoogle Scholar
  7. 7.
    R.O. James, A. Homola and T.W. Healy, J.C.S. Faraday I ,1977, 73, 1436Google Scholar
  8. 8.
    E. Matijevic, in Twenty Years of Colloid and Surface Chemistry-The Kendall Award Address ,ed. K.J. Mysels (A.C.S. Washington, D.C., 1973), p.283.Google Scholar
  9. 9.
    R.O. James, G.R. Wiese and T.W. Healy, J. Colloid Interface Sci. ,1977, 59, 381.Google Scholar
  10. 10.
    L.R. White and T.W. Healy, to be published.Google Scholar
  11. 11.
    J. Lyklema, Disc. Faraday Soc. ,1971, 52, 317.Google Scholar
  12. 12.
    R.H. Ottewill, J. Colloid Interface Sci., 1977 ,58, 357.CrossRefGoogle Scholar
  13. 13.
    R.H. Ottewill and J.N. Shaw, Disc. Faraday Soc. ,1966, 42, 154.CrossRefGoogle Scholar
  14. 14.
    G. Frens and J.Th.G. Overbeek, J. Colloid Interface Sei. ,1971, 36, 286.CrossRefGoogle Scholar
  15. 15.
    G.R. Wiese, Ph.D. Thesis(University of Melbourne, Australia, 1973).Google Scholar
  16. 16.
    H. Reerink and J.Th.G. Overbeek, Disc. Faraday Soc. ,1954, 18, 74.CrossRefGoogle Scholar
  17. 17.
    G.R. Wiese and T.W. Healy, Trans. Faraday Soc. , 1970, 66, 490.CrossRefGoogle Scholar
  18. 18.
    J.Th.G. Overbeek, J. Colloid Interface Sci. ,1977, 58, 408.CrossRefGoogle Scholar
  19. 19.
    R. Benitez and F. MacRitchie, J. Colloid Interface Sci. ,1972, 40, 310.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • T. W. Healy
    • 1
  • A. Homola
    • 1
  • R. O. James
    • 1
  • R. J. Hunter
    • 2
  1. 1.Colloid and Surface Chemistry Group, Department of Physical ChemistryUniversity of MelbourneParkvilleAustralia
  2. 2.Department of Physical ChemistryUniversity of SydneySydneyAustralia

Personalised recommendations