Advertisement

Physico-Chemical Properties of Viscoelastic Aqueous Detergent Solutions

Part II. Viscosity and flow birefringence of aqueous solutions of cetyl trimethyl ammonium salicylate
  • Signe Gravsholt

Abstract

Thermodynamically stable aqueous solutions of the cationic detergent cetyl trimethyl ammonium salicylate show viscoelastic behavior at concentrations slightly above the critical micelle concentration. At very low shear rates (γ < 0.2 s-1 ) the solutions are Newtonian, whereas at higher shear rates the solutions are rheopectic. Shear stress relaxation curves indicate 3 relaxation times in the range of 1 to 20 min. Calculated on the basis of the low shear measurements the size of the micelles seems to vary drastically with concentration, from a length of 100 nm at 0.5 mM to 750 nm at 1.0 mM. The viscoelastic solutions also show strong flow birefringence.

Keywords

Shear Rate Critical Micelle Concentration Cetyl Trimethyl Ammonium Bromide High Shear Rate Cetyl Trimethyl Ammonium Bromide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gravsholt, S., J. Colloid Interface Sci. 57, 575–7, (1976).CrossRefGoogle Scholar
  2. 2.
    Gravsholt, S., Proc. VIIth Intern. Congr. Surface Active Substances, Moscow 1976, V 2 (II), 906–10.Google Scholar
  3. Gravsholt, S., Naturwissenschaften, submitted for publication.Google Scholar
  4. 4.
    Skelland, A. H. P., Non-Newtonian Flow and Heat Transfer p. 13, Wiley, New York 1967.Google Scholar
  5. 5.
    Hyde, A. J., Maguire, D. J. and Stevenson, D. M., Proc.VIth Intern. Congr. Surface Active Substances, Zurich 1972, V II(2), 813–23.Google Scholar
  6. 6.
    Scheraga, H. A. and Backus, J. K., J. Amer. Chem. Soc. 73,5108–12 (1951)CrossRefGoogle Scholar
  7. 7.
    Bain, R. M. and Hyde, A. J., Faraday Symp no 5, 145–9 (1971).CrossRefGoogle Scholar
  8. 8.
    Mukerjee, P. and Mysels, K. J., Critical Micelle Concentrations of Aqueous Surfactant Systems p. 57. Nat. Stand. Ref. Data Ser. Nat. Bur. Stand (U.S.) 36, 1971.Google Scholar
  9. 9.
    Jensen, J. B., Anal. Chim. Acta a: 76, 279–87 (1975),CrossRefGoogle Scholar
  10. 9a).
    Jensen, J. B., Anal. Chim. Acta b: 91, 149–56 (1977).Google Scholar
  11. 10.
    Spinelli, F. R. and Meier, Ch. D., Biorheol. 11, 301–8 (1974).Google Scholar
  12. 11.
    Ekwall, P., Mandell, L. and Solyom, P., J. Colloid Interface Sci, 35, 519–28 (1971).CrossRefGoogle Scholar
  13. 12.
    Eilers, H., Kolloid Z. 102, 154–69 (1943).CrossRefGoogle Scholar
  14. 13.
    Scheraga, H. A., J. Chem. Phys. 23, 1526–32 (1955).Google Scholar
  15. 14.
    Perrin, F., J. Phys. Radium. Ser. VII, 5, 497–511 (1934).CrossRefGoogle Scholar
  16. 15.
    Nemoto, N., Schrag, J. H., Ferry, J. D. and Fulton, R. W., Biopolymers 14, 409–17 (1975).CrossRefGoogle Scholar
  17. 16.
    Provencher, S. W., Biophys. J. 16, 27–41 (1976).CrossRefGoogle Scholar
  18. 17.
    Reiss-Husson, F. and Luzzati, V., J. Phys. Chem. 68, 3504 –11 (1964).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Signe Gravsholt
    • 1
  1. 1.Fysisk-Kemisk InstitutThe Technical University of DenmarkLyngbyDenmark

Personalised recommendations