Applicability of Dlvo Theory to the Formation of Ordered Arrays of Monodisperse Latex Particles

  • P. R. Krumrine
  • J. W. Vanderhoff


Monodisperse latexes often display irisdescent colors, particularly those subjected to dialysis, ion exchange, or serum replacement and those concentrated to high solids. These iridescent colors have been shown to result from Bragg reflection of light from successive planes of ordered latex particles. One hypothesis proposed to explain this ordering and the accompanying two-phase transition is the so-called Kirkwood-Alder transition, which proposes a two-phase system over a narrow free volume range as the volume is increased, starting from a close-packed system of spheres. This paper proposes another hypothesis based on DLVO electric double layer theory. Computer calculations based on the DLVO theory show that repulsive forces are still significant over all particle separation distances and electrolyte concentrations at which iridescence is observed. Therefore, a potential well of repulsion can be calculated where the steepness and height of the repulsive barrier can give an indication of the state of the system, even in a two-phase region. The potential well of repulsion has been calculated as a function of latex particle size and concentration, surface potential, and electrolyte concentration. The results of these calcultations are in accord with experimental observations of the phase boundaries between ordered, disordered and co-existing ordered-disordered regions; however, it is necessary to invoke the minimization of the entropy in the coexisting ordered-disordered state over that in the disordered state.


Electrolyte Concentration Latex Particle Interparticle Distance Polystyrene Latex Secondary Minimum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Alfrey, Jr., E.B. Bradford, J.W. Vanderhoff, and G. Oster, J. Opt. Soc. Am. 44, 603(1954).Google Scholar
  2. 2.
    J.W. Vanderhoff, H.J. van den Hul, R.J.M. Tausk, and J.G.Th. Overbeek, Clean Surfaces: Their Preparation and Characterization for Interfacial Studies, Marcel Dekker, New York, 1970, p. 15.Google Scholar
  3. 3.
    W. Luck, M. Klier, and H. Wesslau, Ber. Bunsenges. Phys. Chem. 67, 75, 84, (1963).Google Scholar
  4. 4.
    W. Luck, A. P. Phys. Blatter 7, 304(1967).Google Scholar
  5. 5.
    P.A. Hiltner and I.M. Krieger, j. Phys. Chem. 73, 2386(1969).Google Scholar
  6. 6.
    P.A. Hiltner, Y.S. Papir, and I.M. Krieger, J. Phys. Chem. 75, 1881(1971).Google Scholar
  7. 7.
    R. Williams and R.S. Crandall, Phys, Lett. 48A, 225(1974).Google Scholar
  8. 8.
    D.W. Schaefer and B.J. Ackerson, Phys. Rev. Lett. 35., 1448 (1975).CrossRefGoogle Scholar
  9. 9.
    J.C. Brown, J.W. Goodwin, R.W. Ottewill, and P.N. Pusey, Colloid Interface Sci. (Proc. International Conference -50th), 4, 59(1976).Google Scholar
  10. 10.
    B.J. Alder and T.E. Wainwright, Phys. Rev. 127, 359(1962).CrossRefGoogle Scholar
  11. 11.
    B.J., Alder, W.G. Hoover, and D.A. Young, J. Chem. Phys. 49, 3688(1968).Google Scholar
  12. 12.
    W.G. Hoover, S.G. Gray, and K.W. Johnson, J. Chem. Phys. 55, 1128(1971).Google Scholar
  13. 13.
    M. Wadati and M. Toda, J. Phys. Soc. Japan 32, 1147(1972).CrossRefGoogle Scholar
  14. 14.
    S. Hachisu, Y. Kobayashi, and A. Kose, J. Colloid Interface Sci. 42, 342(1973).CrossRefGoogle Scholar
  15. 15.
    A. Kose, M. Ozake, K Takano, Y Kobayashi, and S. Hachisu, J. Colloid Interface Sci. 44, 330(1973).CrossRefGoogle Scholar
  16. 16.
    A. Kose and S. Hachisu, J. Colloid Interface Sci. 46, 460 (1974).CrossRefGoogle Scholar
  17. 17.
    S. Hachisu and Y. Kobayashi, J. Colloid Interface Sci. 46, 470(1974).CrossRefGoogle Scholar
  18. 18.
    S. Hachisu, A. Kose, Y. Kobayashi, and K. Takano, J. Colloid Interface Sci. 55, 499(1976).CrossRefGoogle Scholar
  19. 19.
    K. Takano and S. Hachisu, Sci. Light 25, 29(1976).Google Scholar
  20. 20.
    K. Takano and S. Hachisu, Sci. Light 25, 67(1976).Google Scholar
  21. 21.
    K. Takano and S. Hachisu, J. Phys. Soc. Japan 42, 1775(1977).CrossRefGoogle Scholar
  22. 22.
    K. Takano and S. Hachisu, J. Chem. Phys. 67, 2604(1977).Google Scholar
  23. 23.
    H. Fujita and K. Ametani, Jap. J. Appl. Phys. 16, 1091(1977).Google Scholar
  24. 24.
    I. Snook and W. van Megen, J. Chem. Soc., Faraday Trans. II 72, 216(1976).Google Scholar
  25. 25.
    S.L. Brenner, J. Phys, Chem. 80, 1473(1976).CrossRefGoogle Scholar
  26. 26.
    C.J. Barnes, D.Y.C. Chan, D.H. Everett, and D.E. Yates, J. Chem. Soc, Trans. Faraday Soc. II 74, 136(1978).Google Scholar
  27. 27.
    E.J.W. Verwey and J.G.Th. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam, 1948.Google Scholar
  28. F.M. Fowkes, Private communication.Google Scholar
  29. 29.
    W.J. Moore, Physical Chemistry, 3rd Ed., Prentice Hall, New York, 1962.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • P. R. Krumrine
    • 1
  • J. W. Vanderhoff
    • 1
  1. 1.Emulsion Polymers InstituteLehigh UniversityBethlehemUSA

Personalised recommendations