Advertisement

Ordered and Disordered Aggregation of Colloidal Particles and Macromolecules

  • W. Heller

Abstract

Rigid nonspherical colloidal particles or macromolecules may, under certain conditions, form aggregates. The factors are briefly discussed which determine whether such aggregates are disordered or ordered. Experimental tests are carried out in order to check the conclusions arrived at. The colloidal systems used are dispersions of colloidal ß-FeOOH and α-FeOOH crystals. Differences in the degree of order of the aggregates are achieved (a) by wide variations in the rate of coagulation by addition of electrolyte to the sols; (b) by surface coagulation; and (c) by mixed coagulation. The degree of order of the aggregates obtained and its variation with the experimental variables is determined by measurements of the magnetic birefringence and, in certain cases, by measurements of the anisotropic turbidity and of the anisotropy of forward scattered light. The concept of an anisotropy of the collision number, introduced as one of the factors determining the order of the aggregates is verified experimentally by comparing the rate of aggregation and the final anisotropy of aggregates if the primary particles are oriented and if they are randomly oriented prior to aggregation. The aggregates covered thus far are “irreversible”; i.e., only very drastic action, such as ultrasonic treatment, can break them up. In contradistinction, “reversible” aggregates which disperse on gentle agitation to reform reversibly exhibit generally a remarkably high degree of internal order. This type of ordered aggregates in which the individual primary particles may maintain long range equilibrium distances of the order of the wavelength of visible radiation, exhibit, in most cases known, nematic or smectic symmetry of structure reminiscent of the symmetry properties of liquid crystals with which they are often confused in spite of fundamental differences.These differences are indicated and briefly reviewed. The similarities and differences between this type of aggregates, generally referred to as tactoids, and coacervates and irreversible crystalloids (e.g., molecular crystals) are briefly discussed and also the special cases of reversible aggregation in thixotropic and syneretic systems and of irreversible aggregation in permanent gels. All aggregation processes referred to thus far are observed in systems containing fairly or completely rigid primary particles (crystals or macromole-cules). The discussion is rounded out by briefly reviewing also prototypes of ordered structures obtained from fully or moderately flexible macromolecules. Finally, going beyond the subject matter indicated in the title, ordered structures of low molecular weight, flexible, amphipathic molecules, viz. micelles, micellar tactoids and micellar crystals, will also be surveyed briefly in order to point out broad similarities and differences in their structure and properties compared to the structure of colloidal particles and macromolecules.

Keywords

Primary Particle Colloidal Particle Potential Energy Curve Optical Anisotropy Nonspherical Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Kallmann and M. Willstätter, Naturwissenschaften, 20, 952 (1932).CrossRefGoogle Scholar
  2. 2.
    H. Freundlich, Thixotropy, Volume 267 of Actualités Scienti-fiques et Industrielles, Hermann and Co., Paris, 1935.Google Scholar
  3. 3.
    E. J. W. Verwey and J. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam, 1948.Google Scholar
  4. 4.
    B. Derjaguin, Trans. Faraday Soc, 36, 203 (1940);CrossRefGoogle Scholar
  5. B.V. Derjaguin and L. D. Landau, Acta Phys. Chim. USSR, 14, 633 (1941).Google Scholar
  6. 5.
    I. Iangmuir, J. Chem. Phys., 6, 893 (1938).Google Scholar
  7. 6.
    L. Onsager, Annals New York Academy of Sciences, 51, 627 (1949).CrossRefGoogle Scholar
  8. P. J. Flory, Macromolecules, 11, 1119, 1122, 1126, 1134, 1138, 1141 (1978).Google Scholar
  9. 7.
    W. Heller, Reviews of Modern Physics, 31, 1072 (1959).CrossRefGoogle Scholar
  10. 8.
    W. Heller, Reviews of Modern Physics, 14, 390 (1942).CrossRefGoogle Scholar
  11. 9.
    W. Heller and H. Zocher, Zeitschr. f. physikalische Chemie A, 164, 55 (1933);Google Scholar
  12. W. Heller, Kolloid Beih., 39, 1 (1933).Google Scholar
  13. 10.
    H. Diesselhorst and H. Freundlich, Physik. Z. 16, 422 (1915).Google Scholar
  14. H. Diesselhorst and H. Freundlich, Physik. Z. 17, 117 (1916).Google Scholar
  15. 11.
    A. Cotton and H. Mouton, Ann. Chim. Phys. (8)11, 145 (1907)Google Scholar
  16. A. Cotton and H. Mouton, Compt. rend. 141, 317, 349 (1905)Google Scholar
  17. 12.
    W. Heller, Nouvelles recherches sur les propriétés magnéto-öptiques des solutions colloidales, Actualités Scientifiques et Industrielles, Volume 806, Hermann et Co., Paris, 1939.Google Scholar
  18. 13.
    W. Heller and H. Zocher, Zeitschr. f. physikalische Chemie A 166, 365 (1933); see also references 9 and 12.Google Scholar
  19. 14.
    H. Freundlich and S. Wosnessensky, Kolloid Z. 33, 222 (1923).CrossRefGoogle Scholar
  20. 15.
    W. Heller and J. Peters, J. Colloid and Interface Sci., 32, 592 (1970).CrossRefGoogle Scholar
  21. 16.
    W. Heller, O. Kratky and H. Nowotny, Compt. rend. 202, 1171 (1936).Google Scholar
  22. 17.
    J. Peters and W. Heller, J. Colloid and Interface Sci. 33, 578 (1970).CrossRefGoogle Scholar
  23. J. Peters and W. Heller, J. Colloid and Interface Sci. 35, 300 (1971).CrossRefGoogle Scholar
  24. W. Heller and Wm. B. DeLauder, ibid., 35, 60, 308 (1971).Google Scholar
  25. Still unpublished results of Wm. B. DeLauder.Google Scholar
  26. 19.
    W. Heller, J. Phys. Chem., 46, 783 (1942).Google Scholar
  27. 20.
    W. Heller and W. Wojtowicz, Phys. Reviews 82, 301 (1951).Google Scholar
  28. 21.
    J. D. Bernal and I. Fankuchen, J. General Physiology, 25, 111 (1941).CrossRefGoogle Scholar
  29. 22.
    H. Zocher, Z. Physikalische Chemie, 147, 91 (1925).Google Scholar
  30. H. Zocher and K. Jacobsohn, Kolloid Beih. 28, 167 (1929).CrossRefGoogle Scholar
  31. 23.
    J. H. L. Watson, W. Heller and W. Wojtowicz, Science, 109, 274 (1949).CrossRefGoogle Scholar
  32. 24.
    Still unpublished results of W. Wojtowica; see W. Wojtowicz, Ph.D. Thesis, Wayne State Unive-sity, 1952.Google Scholar
  33. 25.
    C. Robinson, Molecular Crystals, 1, 467 (1966)CrossRefGoogle Scholar
  34. C. Robinson, Tetrahedron, 13, 219 (1961).CrossRefGoogle Scholar
  35. 26.
    S. L. Papkov, V. G. Kalichikhin and V. D. Kalmykova, J. Polymer Sci., Polym. Phys. Ed., 12, 1753 (1974).CrossRefGoogle Scholar
  36. 27.
    J. H. L. Watson, R. R. Cardell and W. Heller, J. Phys. Chem., 66, 1757 (1962).Google Scholar
  37. 28.
    H. Zocher and W. Heller, Zeitschr. anorg. u. allgem. Chemie, 186, 75 (1930).Google Scholar
  38. 29.
    For an exhaustive collection of literature references see I. F. Efremov in Surface and Colloid Science, Vol.8, E. Matijevi, Editor, Wiley and Sons, New York, 1936.Google Scholar
  39. 30.
    W. Heller, Compt. rend., 201, 831 (1935).Google Scholar
  40. 31.
    P. Bergmann, P. Loewbeer and H. Zocher, Z. Physikal. Chemie A, 181, 301 (1938).Google Scholar
  41. 32.
    Results by T. Schuster to be published; see T. Schuster, MS thesis, Wayne State University, 1960.Google Scholar
  42. 33.
    W. Heller, paper presented at the 153rd Meeting of the American Chemical Society, Miami, 1967.Google Scholar
  43. 34.
    T. Alfrey, Jr., E. B. Bradford, J. W. Vanderhoff and G. Oster, J. Optical Soc. Am., 44, 603 (1964).Google Scholar
  44. 35.
    I. M. Krieger and P. Anne Hiltner, in Polymer Colloids, R. Fitch, Editor, Plenum Press, 1971.Google Scholar
  45. 36.
    W. Heller, Compt. rend., 202, 61 (1936).Google Scholar
  46. 37.
    W. Heller, J. Phys. Chem., 45, 1203 (1941).Google Scholar
  47. 38.
    W. Heller, J. Phys. Chem., 46, 783 (1941).Google Scholar
  48. 39.
    W. Heller, Kolloid Zeitschr., 50, 125 (1930).CrossRefGoogle Scholar
  49. 40.
    W. Heller and G. Quimfe, J. Phys. Chem., 46, 765 (1942)Google Scholar
  50. W. Heller and G. Quimfe, Compt. rend., 205, 857 (1937).Google Scholar
  51. 41.
    H. Freundlich and F. Juliusburger, Trans. Faraday Soc., 178, 445 (1936).Google Scholar
  52. 42.
    W. Heller and G. Quimfe, Compt. rend., 205, 1394 (1937).Google Scholar
  53. 43.
    J. H. L. Watson, W. Heller and W. Wojtowicz, J. Chem. Phys., 16, 997 (1948).Google Scholar
  54. 44.
    W. Biltz, Ber. Dtsch. Chem. Ges., 37, 1098 (1904).Google Scholar
  55. 45.
    W. Heller and H. L. Roeder, Transactions Faraday Society, 38, 191 (1942).CrossRefGoogle Scholar
  56. 46.
    J. H. L. Watson, W. Heller and T. Schuster, Proc. Royl Reg. Conf. on Electron Microscopy, Delft, I, 229 (1960).Google Scholar
  57. 47a).
    a) Bungenberg de Jong: pages 232–480 in: Colloid Science, Vol. II, H. R. Kruyt Ed., Elsevier, 1949.Google Scholar
  58. 47b).
    b) Bungenberg de Jong: La coacervation; Les coacervats I, Actualités Scientifiques et Industrielles, Vol. 397, Hermann et Co., Paris, 1936.Google Scholar
  59. 47c).
    Bungenberg de Jong: La coacervation; Les coacervats II, ibid, Vol. 398 (1936).Google Scholar
  60. 48.
    O. Lehmann, Flüssige Kristalle, Leipzig 1904; also Ergebnisse der Physiolgie, 16, 255 (1917).CrossRefGoogle Scholar
  61. 49.
    G. Friedel, Ann, de phys., 18, 273 (1922).Google Scholar
  62. 50.
    G. S. Hartley, Aqueous Solutions of Long Chain Salts, Actualités Scientifiques et Industrielles, Hermann and Co., Paris, 1936.Google Scholar
  63. G. S. Hartley, G. S. Collie and C. S. Sàmis, Trans. Faraday Soc., 32, 796 (1936);CrossRefGoogle Scholar
  64. G. S. Hartley, J. Chem. Soc., 1968(1938).Google Scholar
  65. 51.
    P. Debye and E. W. Anacker, J. Phys. and Colloid Chem., 55, 644 (1951).CrossRefGoogle Scholar
  66. 52.
    K. Hess, H. Kiessig and W. Philippoff, Naturwiss., 26, 184 (1938)CrossRefGoogle Scholar
  67. 52a).
    K. Hess, H. Kiessig and W. Philippoff, Kolloid Zeitschr., 88, 40 (1939)CrossRefGoogle Scholar
  68. 52b).
    K. Hess, H. Kiessig and W. Philippoff, and various later papers 1939–1942.Google Scholar
  69. 53.
    D. G. Dervichian, Molecular Crystals, 2, 55 (1966)CrossRefGoogle Scholar
  70. 53a).
    D. G. Dervichian, Trans. Faraday Soc., 42B, 180 (1946);CrossRefGoogle Scholar
  71. 53b).
    D. M. Small, M. C. Bourgès and D. G. Dervichian, Biochimica et Biophysica Acta, 125, 563 (1966);Google Scholar
  72. 53c).
    D. M. Small and M. Bourgès, Molecular Crystals, 1, 541 (1966)CrossRefGoogle Scholar
  73. 54.
    I. Langmuir, Proceedings Royal Soc., London, A, 170, No. 940, 1 (1939)Google Scholar
  74. 54a).
    K. B. Blodgett, J. Am. Chem. Soc., 57, 1007 (1937).CrossRefGoogle Scholar
  75. 55.
    I. Langmuir, V. J. Schaeffer and D. Wrinch, Science, 85, 76 (1937).CrossRefGoogle Scholar
  76. 56.
    A. Frey-Wyssling, Submicroscopic Morphology of Protaplasm, Elsevier, New York, 1953.CrossRefGoogle Scholar
  77. 57.
    T. Kimura, pages 447–461 in: The Structural Basis of Membrane Function, Y. Hatefi and L. Djavadi-Ohaniance, Editors, Aca demic Press, 1976.Google Scholar
  78. 58.
    W. Heller and H. B. Klevens, CR (Copolymer Research Reports to Office of Rubber Reserve, War Production Board) 124, 237 (1943)Google Scholar
  79. 58a).
    W. Heller and H. B. Klevens, CR (Copolymer Research Reports to Office of Rubber Reserve, War Production Board) 241 (1944) 563Google Scholar
  80. 58b).
    W. Heller H. B. Klevens,CR (Copolymer Research Reports to Office of Rubber Reserve, War Production Board) 241 670 (1945)Google Scholar
  81. 58c).
    W. Heller and D. eolkin, ibid., 160 (1943)Google Scholar
  82. 58d).
    W. Heller, H. B. Klevens and H. Oppenheimer, ibid., 888 (1945).Google Scholar
  83. 59.
    W. D. Harkins, J. Am. Chem. Soc., 69, 1428 (1947).CrossRefGoogle Scholar
  84. 60.
    S. E. Sheppard and A. L. Geddes, J. Chem. Phys., 13, 63 (1945).Google Scholar
  85. 61.
    E.G., J. K. Thomas, F. Grieser and M. Wong, Ber. Bunsen Gesallschaft für Physikalische Chemie, 82, 937 (1978).Google Scholar
  86. 62.
    M. L. Huggins, Chem. Revs., 32, 195 (1943).CrossRefGoogle Scholar
  87. 63.
    L. Pauling, R. B. Corey and H. R. Branson, Proc Natl. Acad. Sci. U. S., 37, 205 (1951).CrossRefGoogle Scholar
  88. 64.
    J. D. Watson and F. H. C. Crick, Nature, 171, 737, 964 (1953)CrossRefGoogle Scholar
  89. 64a).
    F. H. C. Crick and J. D. Watson, Proc. Roy. Soc. A, 223, 80 (1954).Google Scholar
  90. 65.
    W. Heller, Compt. rend., 202, 1507 (1936).Google Scholar
  91. 66.
    D. G. Menter, M. Obika, T. T. Tchen and D. Taylor, J. of Morphology, 160, 103 (1979).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • W. Heller
    • 1
  1. 1.Chemistry DepartmentWayne State UniversityDetroitUSA

Personalised recommendations