Skip to main content

Reversible Effects of Ethanol on E. coli

  • Chapter
Biological Effects of Alcohol

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 126))

Abstract

The primary site of action of ethanol and other general anesthetics on the nervous system is the cell membrane (Hill and Bangham, 1975; Lee, 1977). These drugs have been shown to intercalate into biological membranes and this intercalation has been correlated with the anesthetic effect (Seeman, 1972; Hubbell and McConnel, 1968; Roth and Seeman, 1972). The potency of general anesthetics is directly related to their lipid solubility, indicating a hydrophobic site of action (Lee, 1976; Seeman, 1972). Within the membrane, there are three major types of hydrophobic sites for the intercalation of ethanol: between adjacent lipid molecules, at the lipid/protein boundary and in hydrophobic regions of proteins. Studies with ethanol (Roth and Seeman, 1972; Hill, 1974; Paterson, et al., 1972; Hui and Barton, 1973) and other general depressants have demonstrated that these drugs alter the physical properties of membranes by interacting at one or more of these sites. It is these changes which have been proposed as the basis of anesthesia (Lee, 1977; Lee, 1976).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames, G. Lipids of Salmonella typhimurium and Escherichia coli: Structure and metabolism. J. Bacteriol., 95: 833–843, 1968.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bergelson, L.D., Dyatlovitskaya, E.V. and Voronkova, V.V. Complete structural analysis of fatty acid mixtures by thin- layer chromatography. J. Chromatog., 15, 191–199, 1964.

    Article  CAS  Google Scholar 

  • Blackwood, A.C., Neish, A.C. and Ledingham, G.A. Dissimilation of glucose at controlled pH values by pigmented and non- pigmented strains of Escherichia coli. J. Bacteriol., 72: 497–499, 1956.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buttke, T.M. and Ingram, L.O. Mechanism of ethanol-induced changes in lipid composition of Escherichia coli; Inhibition of saturated fatty acid synthesis vivo. Biochemistry, 17; 637–644, 1978.

    Article  CAS  PubMed  Google Scholar 

  • Caldwell, J., and Sever, P.S. The biochemical pharmacology of abused drugs. II. Alcohol and barbiturates. Clin. Pharmacol. Ther., 16: 737–749, 1974.

    CAS  PubMed  Google Scholar 

  • Chin, J.H. and Goldstein, D.B. Effects of low concentrations of ethanol on the fluidity of spin-labeled erythrocyte and brain membranes. Molec. Pharmacol., 13: 435–441, 1977.

    CAS  Google Scholar 

  • Chin, J.H. and Goldstein, D.B. Drug tolerance in biomembranes; A spin label study of the effects of ethanol. Science, 196; 684–685, 1976.

    Article  Google Scholar 

  • Cronan, J.E., Jr. Thermal regulation of the membrane lipid composition of Escherichia coli. J. Biol. Chem., 250: 7074–7077, 1975.

    CAS  PubMed  Google Scholar 

  • Cronan, J.E., Jr. Regulation of the fatty acid composition of the membrane phospholipids of Escherichia coli. Proc. Nat. Acad. Sei. U.S.A., 71; 3758–3762, 1974.

    Article  CAS  Google Scholar 

  • Cronan, J.E., Jr., and Gelman, E.P. Physical properties of membrane lipids; biological relevance and regulation. Bacteriol. Rev., 39: 232–256, 1975.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cubero, J.M. and Mangold, H.K. Chromatography on absorbant layers impregnated with silver nitrate. Microchem. J., 9: 227–236, 1965.

    Article  CAS  Google Scholar 

  • D’Agnolo, G., Rosenfeld, I.S. and Vagelos, P.R. Multiple forms of β-ketoacyl-acyl carrier protein synthetase in Escherichiacoli. J. Biol. Chem., 250: 5289–5294, 1975.

    PubMed  Google Scholar 

  • Dittmer, J.C., and Lester, R.L. A simple, specific spray reagent for the detection of phospholipids on thin-layer chromatograms. J. Lipid Res., 7: 324–327, 1964.

    Google Scholar 

  • Evans, D.J. Jr. Membrane adenosine triphosphatase of Escherichia coli: Activation by calcium ion and inhibition by monovalent cations. J. Bacteriol., 100: 914–922, 1969.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fox. C-F. The structure of cell membranes. Scientific American, 226(2); 30–38, 1972.

    Article  Google Scholar 

  • Fried, V.A. and Novick, A. Organic solvents as probes for the structure and function of the bacterial membrane: Effects of ethanol on the wild type and an ethanol-resistant mutant of Escherichia coli K-12. J. Bacteriol., 114: 239–248, 1973.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fulco, A.J. Metabolic alterations of fatty acids. Annu. Rev. Biochem., 43: 215–241, 1974.

    Article  CAS  PubMed  Google Scholar 

  • Futai, M., Stemweis, P.C., and Keppel, L.A. Purification and properties of reconstitutively active and inactive adeno- sinetriphosphatase from Escherichia coli. Proc. Nat. Acad. Sei. U.S.A., 71: 2725–2729, 1974.

    Article  CAS  Google Scholar 

  • Gelmann, E.P. and Cronan, J.E., Jr. Mutant of Escherichia coli deficient in the synthesis of cis-vaccenic acid. J. Bacteriol., 112: 381–387, 1972.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hesketh, T.R., Smith, G.A. Houslay, M.D., McGill, K.A., Birdsall, N.J.M., Metcalfe, J.C. and Warren, G.B. Annular lipids determine the ATPase activity of a calcium transport protein complexed with dipalmitoyllecithin. Biochemistry, 15: 4145–4151, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Hill, M.W. The effect of anaesthetic-like molecules on the phase transition in smectic mesophases of dipalmitoyllecthin I. The normal alcohols up to C=9 and three inhilation anaesthetics. Biochim. Biophys. Acta, 356:117–124, 1974.

    Article  CAS  PubMed  Google Scholar 

  • Hill, M.W. and Bangham, A.D. General depressant drug dependency; a biophysical hypothesis. In M.M. Gross (Ed.), Alcohol Intoxication and withdrawal. Experimental Studies. II, pp. 1–9, New York, Plenum Press, 1975.

    Google Scholar 

  • Hubbell, W.L. and McConnel, H.M. Spin-label studies of the excitable membranes of nerve and muscle. Proc. Nat. Acad. Sei., 61 : 12–16, 1968.

    Article  CAS  Google Scholar 

  • Hui, F.K., and Barton, P.G. Mesomorphic behavior of some phospholipids with aliphatic alcohols and other non-ionic substances. Biochim. Biophys. Acta, 296: 510–517, 1973.

    Article  CAS  PubMed  Google Scholar 

  • Ingram, L.O. Changes in lipid composition of Escherichia coli resulting from growth with organic solvents and with food additives. App. Env. Microbiol., 33: 1233–1236, 1977.

    CAS  Google Scholar 

  • Ingram, L.O. Preferential inhibition of phosphatidyl ethanolamine synthesis in E. coli by alcohols. Can. J. Microbiol., 23: 779–789, 1977.

    Article  CAS  PubMed  Google Scholar 

  • Ingram, L.O. Adaptation of membrane lipids to alcohols. J. Bacteriol., 125; 670–678, 1976.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ingram, L.O. Ley, K.D., Hoffmann, E.M. Drug-induced changes in lipid composition of E. coli and of mammalian cells in culture: ethanol, pentobarbital, and chlorpromazine. Life Sciences, 22: 489–494, 1978.

    Article  CAS  PubMed  Google Scholar 

  • Kanfer, J., and Kennedy, E.P. Metabolism and function of bacterial lipids. J. Biol. Chem., 238: 2919–2922, 1973.

    Google Scholar 

  • Kepes, A. Beta-galactoside permease of Escherichia coli. J. Memb. Biol., 4: 87, 1971.

    Article  CAS  Google Scholar 

  • Kwant, W.O. and Seeman, P. The membrane concentration of a local anesthetic (chlorpromazine). Biochim. Biophys. Acta, 183; 530–543, 1969.

    Article  CAS  PubMed  Google Scholar 

  • Lee, A.G. Local anesthesia; The interaction between phospholipids and chlorpromazine, propranolol and practolol. Mol. Pharmacol., 13: 474–487, 1977.

    CAS  PubMed  Google Scholar 

  • Lee, A.G. Model for action of local anaesthetics. Nature, 262: 545–548, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Lennarz, W.J., Light, R.J., and Bloch, K. A fatty acid synthetase from E. coli. Proc. Nat. Acad. Sei. U.S.A., 48: 840–845, 1962.

    Article  CAS  Google Scholar 

  • Lieber, S.C. Hepatic and metabolic effects of alcohol (1966 to 1973). Gastroenterology, 65: 821–846, 1973.

    CAS  PubMed  Google Scholar 

  • Lowenfels, A.B., The Alcoholic Patient in Surgery, Williams and Wilkens, New York, 1971.

    Google Scholar 

  • Luria, S.E. and Delbrück, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics, 28: 491–511, 1943.

    CAS  PubMed  Google Scholar 

  • Marr, A.G., and Ingraham, J.L. Effect of temperature on the composition of fatty acids in Escherichia coli. J. Bacteriol., 84: 1260–1267, 1962.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer, K.H. Contributions to the Theory of Narcosis. Tran. Farad. Soc., 33: 1062–1068, 1937.

    Article  CAS  Google Scholar 

  • Miller, J.H. Experiments in Molecular Genetics, pp. 230–234, Cold Spring Harber Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Mirsky, I.A., Piker, P., Rosenbaum, M., and Lederer, H., “Adaptation” of the central nervous system to varying concentrations of alcohol in the blood. Quart. J. Ale. Stud., 2: 35–35, 1941.

    CAS  Google Scholar 

  • Morris, L.J., Wharry, D.M., Hammond, E.W. Chromatographic behavior of isomeric long-chain aliphatic compounds. II. Argentation thin-layer chromatography of isomeric octadecenoates. J. Chromatog., 31: 69–76, 1967.

    Article  CAS  Google Scholar 

  • Muralt, A. Von., Lipids, Malnutrition and the Developing Brain, Elsevier Press, New York, 1972.

    Google Scholar 

  • Newman, H.W. Acquired tolerance to ethyl alcohol. Quart. J. Stud. Ale., 2: 453–463, 1941.

    CAS  Google Scholar 

  • Overath, P., Schairer, H.V. and Stoffel, W.S. Correlation in in vivo and vitro phase transitions of membrane lipids in Escherichia coli, Proc. Nat. Acad. Science U.S.A., 67: 606–612, 1970.

    Article  CAS  Google Scholar 

  • Paterson, S.J., Butler, K.W., Huang, P., Labelle, I.C., Smith, P., and Schneider, H. The effects of alcohols on lipid bilayers: a spin label study. Biochim. Biophys. Acta, 206; 597–602, 1972.

    Article  Google Scholar 

  • Raetz, C.R.H. and Kennedy, E.P. Partial purification and properties of phosphatidylserine synthetase from Escherichia coli. J. Biol. Chem., 249: 5038–5045, 1974.

    CAS  Google Scholar 

  • Rando, R.R. and Bloch, K., Mechanism of Action of 3-hydroxydecanoyl thioester dehydrase. J. Biol. Chem., 234: 5627–5634, 1968.

    Google Scholar 

  • Roth, S., and Seeman, P. The membrane concentrations of neutral and positive anesthetics (alcohols, chlorpromazine, morphine) fit the Meyer-Overton rule of anesthesia; negative narcotics do not. Biochim. Biophys. Acta, 255: 583–655, 1972.

    Google Scholar 

  • Seeman, P. The membrane actions of anesthetics and tranquilizers. Pharmacol. Rev., 24: 583–655, 1972.

    CAS  PubMed  Google Scholar 

  • Silbert, D.F. Selection of bacterial mutants defective in fatty acid synthesis for the study of membrane biogenesis. In, E.D. Korn, ed., Methods in Membrane Biology VI, p. 151–182, 1976.

    Chapter  Google Scholar 

  • Silbert, D.F., Ladenson, R.C., and Honeger, J.L. The unsaturated fatty acid requirement in Escherichia coli. Biochem. Biophys. Acta, 311: 349–361, 1973.

    Article  CAS  PubMed  Google Scholar 

  • Smith, M.W. and Kemp, P. Parallel temperature-induced changes in membrane fatty acids and in the transport of amino acids in the intestine of goldfish (Carassius Auratus L.). Comp. Biochem. Physiol., 39B: 357–365, 1971.

    Google Scholar 

  • Sullivan, K.H., Jain, M.K. and Koch, A.L. Activation of the ß- galactoside transport system in Escherichia coli ML-308 by n-alkanols-Modification of lipid-protein interaction by a change in bilayer fluidity. Biochim. Biophys. Acta, 352: 287–297, 1974.

    Article  CAS  PubMed  Google Scholar 

  • Vogel, H.J. and Bonner, D.M. Acetyl-ornithase of Escherichia coli; partial purification and same properties. J. Biol. Chem., 218: 97–106, 1956.

    CAS  PubMed  Google Scholar 

  • Volpe, J.J. and Vagelos, P.R. Mechanisms and regulation of biosynthesis of saturated fatty acids. Physiol. Rev., 56:339–417, 1976.

    CAS  PubMed  Google Scholar 

  • Woods, J.H., and Winger, G.D. Alcoholism and animals, Prev. Med., 3: 49–60, 1974.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Ingram, L.O., Dickens, B.F., Buttke, T.M. (1980). Reversible Effects of Ethanol on E. coli . In: Begleiter, H. (eds) Biological Effects of Alcohol. Advances in Experimental Medicine and Biology, vol 126. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3632-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3632-7_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3634-1

  • Online ISBN: 978-1-4684-3632-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics