Advertisement

Physical Dependence on Ethanol: Methodological Considerations

  • Gerhard Freund
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 126)

Abstract

An ethanol-induced biological change may be: 1) cause, 2) effect, 3) unrelated covariate of physical dependence, or 4) an experimental artifact. The first three possible relationships are shown in the Figure and have been discussed in detail elsewhere (Freund, in press, b). In addition to correlation, other criteria were listed to establish the significance of an observation to the pathogenesis of physical dependence. This discussion deals with the fourth possible relationship—the experimental artifact.

Keywords

Liquid Diet Ethanol Consumption Thiamine Deficiency Physical Dependence Ethanol Administration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aston, R. Quantitative aspects of tolerance and posttolerance hypersensitivity to pentobarbital in the rat. J. Pharmacol. Exp. Ther., 250:253–258, 1965.Google Scholar
  2. Badawy, A. A.-B., and Evans, M. The role of free serum tryptophane in the biphasic effect of acute ethanol administration on the concentrations of rat brain tryptamine and 5-hydroxyindol-3yl acetic acid. Biochem. J., 160;315–324, 1976.PubMedGoogle Scholar
  3. Bass, N. H. Influence of neonatal undernutrition on the development of rat cerebral cortex: a microchemical study. In R. Paoletti and A. N. Davison (Eds.), Chemistry and Brain Development Advances in Experimental Medicine and Biology (Vol. 13), pp. 413–424. New York, Plenum Press, 1971.Google Scholar
  4. Benjamins, J. A., and McKhann, G. M. Neurochemistry of development. In R. W. Albers, G. J. Siegel, R. Katzman, and B. W. Agranoff (Eds.) Basic Neurochemistry, pp. 269–298. Boston, Little, Brown, 1972.Google Scholar
  5. Bobillier, P., Sakai, F., Seguin, S., and Jouvet, M. The effect of sleep deprivation upon the in vivo and in vitro incorporation of tritiated amino acids into brain proteins in the rat at three different age levels. J. Neurochem., 22:23–31, 1974.CrossRefGoogle Scholar
  6. Bovet, D., Bovet-Nitti, F., and Oliverio, A. Genetic aspects of learning and memory in mice. Science, 163:139–149, 1969.PubMedCrossRefGoogle Scholar
  7. Breese, G. R., Lundberg, D., Mailman, R. B., Frye, G. D., and Mueller, R. A. Effects of ethanol on cyclic nucleotides in vivo. Consequences of controlling motor and respiratory changes. Drug Alcohol Depend, (in press)Google Scholar
  8. Brozek, J., and Vaes, G. Experimental investigations on the effects of dietary deficiencies on animal and human behavior. Vitam. Horm., 19, 43–94, 1961.Google Scholar
  9. Cicero, T. J., and Hill, S. Y. Ethanol self-selection in rats: a distinction between absolute and 95 percent ethanol. Physiol Behav., 5:787–791, 1970.PubMedCrossRefGoogle Scholar
  10. Coldwell, B. B., Wiberg, G. S., and Trenholm, H. L. Some effects of ethanol on the toxicity and distribution of barbiturates in rats. Can. J. Physiol. Pharmacol., 48: 254–264, 1970.CrossRefGoogle Scholar
  11. Collins, R. L. Audiogenic seizures. In D. P. Purpura et al. (Eds.), Experimental Models of Epilepsy, pp. 347–372. New York, Raven Press, 1972.Google Scholar
  12. Conney, A. H., and Burns, J. J. Metabolic interactions among environmental chemicals and drugs. Science, 178:576–586, 1972.PubMedCrossRefGoogle Scholar
  13. Cremer, J. E. Body temperature and drug effects. In A. Lajtha (Ed.), Handbook of Neurochemistry, pp. 311–323. New York, Plenum Press, 1971.Google Scholar
  14. Czaja, C., and Kalant, H. The effect of acute alcoholic intoxication on adrenal ascorbic acid and cholesterol in the rat. Can. J. Biochem, Physiol., 39:327–334, 1961.CrossRefGoogle Scholar
  15. Dallman, P. R., and Spirito, R. A. Brain response to protein undernutrition. Mechanism of preferential protein retention. J. Clin. Invest., 51, 2175–2180, 1972.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Davis, J. N., Carlsson, A., MacMillian, V., and Siesjo, B. K. Brain tryptophan hydroxylation: dependence on arterial oxygen tension. Science, 182:72–74, 1973.PubMedCrossRefGoogle Scholar
  17. Dobbing, J. Vulnerable periods in developing brain. In A. N. Davison and J. Dobbing (Eds.), Applied Neurochemistry, pp. 287–316. Philadelphia, F. A. Davis, 1968.Google Scholar
  18. Dunlop, D. S., Van Eiden, W., and Lajtha, A. Optimal conditions for protein synthesis in incubated slices of rat brain. Brain Res., 99:303–318, 1975.PubMedCrossRefGoogle Scholar
  19. Dunn, A. J. Intracerebral injections inhibit amino acid incorporation into brain protein. Brain Res., 99;405–409, 1975.PubMedCrossRefGoogle Scholar
  20. Ellis, F. W. Effect of ethanol on plasma corticosterone levels. J. Pharmacol. Exp. Ther., 153;121–127, 1966.PubMedGoogle Scholar
  21. Eriksson, C. J. P. Ethanol and acetaldehyde metabolism in rat strains genetically selected for their ethanol preference. Biochem. Pharmacol., 22:2283–2292, 1973.PubMedCrossRefGoogle Scholar
  22. Eriksson, C. J. P., and Sippel, H. W. The distribution and metabolism of acetaldehyde in rats during ethanol oxidation. I. The distribution of acetaldehyde in liver, brain, blood and breath. Biochem. Pharmacol., 26:241–247, 1977.PubMedCrossRefGoogle Scholar
  23. Figueroa, W. G., Sargent, F., Imperiale, L., Morey, G. R., Paynter, C. R., Vorhaus, L. J., and Kark, R. M. Lack of avitaminosis among alcoholics; its relation to fortification of cereal products and general nutrition status of the population. J. Clin. Nutr., 1;179–199, 1953.PubMedGoogle Scholar
  24. Fitch, R. H., and Tatum, A L. The duration of action of the barbituric acid hypnotics as a basis of classification. J. Pharmacol. Exp. Ther., 44:325–335, 1932.Google Scholar
  25. Folch, P. J. Composition of the brain in relation to maturation. In H. Waelsch (Ed.), Biochemistry of the Developing Nervous System, pp. 121–136. New York, Academic Press, 1955.Google Scholar
  26. Freund, G. Alcohol withdrawal syndrome in mice. Arch. Neurol., 21:315–320, 1969.PubMedCrossRefGoogle Scholar
  27. Freund, G. Alcohol consumption and its circadian distribution in mice. J. Nutr., 100:30–36, 1970a.PubMedGoogle Scholar
  28. Freund, G. Impairment of shock avoidance learning after long- term alcohol ingestion in mice. Science, 168:1599–1601, 1970b.PubMedCrossRefGoogle Scholar
  29. Freund, G. The effect of ethanol and aging on the transport of α-aminoisobutyric acid into the brain. Brain Res., 46; 363–368, 1972.PubMedCrossRefGoogle Scholar
  30. Freund, G. Chronic central nervous system toxicity of alcohol. Annu. Rev. Pharmacol., 13:217–227, 1973a.PubMedCrossRefGoogle Scholar
  31. Freund, G. The prevention of ethanol withdrawal seizures in mice by lidocaine. Neurology, 23:91–94, 1973b.PubMedCrossRefGoogle Scholar
  32. Freund, G. Hypothermia after acute ethanol and benzyl-alcohol administration. Life Sei., 13:345–349, 1973c.CrossRefGoogle Scholar
  33. Freund, G. Induction of physical dependence upon alcohol in rodents. In E. Majchrowicz (Ed.), Biochemical Pharmacology of Ethanol, pp. 311–325. New York, Plenum Press, 1975a.CrossRefGoogle Scholar
  34. Freund, G. Animal models of alcohol withdrawal syndromes and their relevance to pharmacology. In H. D. Cappel and A. E. Le Blanc (Eds.), Biological and Behavioural Approaches to Drug Dependence, pp. 13–25. Toronto, Canada, Addiction Research Foundation, 1975b.Google Scholar
  35. Freund, G. Ethanol-induced changes in body temperature and their neurochemical consequences. In E. Majchrowicz and E. P. Noble (Eds.), Pharmacology of Ethanol. New York, Plenum Press, 1978 (in press, a).Google Scholar
  36. Freund, G. Physical dependence on ethanol: conceptual considerations. Drug Alcohol Depend, (in press, b).Google Scholar
  37. Freund, G., and Forbes, J. T. Alcohol toxicity in cell culture. Life Sei. 19: 1067–1072, 1976.CrossRefGoogle Scholar
  38. Freund, G., and Walker, D. W. Sound-induced seizures during ethanol withdrawal in mice. Psychopharmacologia, 22;45–49, 1971a.PubMedCrossRefGoogle Scholar
  39. Freund, G., and Walker, D. W, Impairment of avoidance learning by prolonged ethanol consumption in mice. J. Pharmacol. Exp. Ther., 179:284–292, 1971b.PubMedGoogle Scholar
  40. Gaitonde, M. K., and Richter, D. The metabolic activity of proteins of the brain. Proc. Roy. Soc. Lond., 145;83–99, 1956.CrossRefGoogle Scholar
  41. Goldstein, D. B. Pharmacological aspects of physical dependence. Life Sei., 18:553–562, 1976.CrossRefGoogle Scholar
  42. Goldstein, D. B., and Kakihana, R. Alcohol withdrawal reactions and reserpine effects in inbred strains of mice. Life Sei., 15:415–425, 1974.CrossRefGoogle Scholar
  43. Growdon, J. H., Cohen, E. L., and Wurtman, R. J, Treatment of brain disease with dietary precursors of neurotransmitters. Ann. Intern. Med., 86:337–339, 1977.PubMedCrossRefGoogle Scholar
  44. Gruber, C. M., Ellis, F. W., and Freedman, G. A toxicological and pharmacological investigation of sodium sec-butyl ethylbarbituric acid (Butisol sodium). J. Pharmacol. Exp. Ther., 81:254–268, 1974.Google Scholar
  45. Hannon, R., and Donlon-Bantz, K. Effects of crowding on alcohol consumption by rats. J. Stud. Alcohol, 36:1273–1276, 1975.PubMedGoogle Scholar
  46. Howard, L., Wagner, C., and Schenker, S. Malabsorption of thiamin in folate-deficient rats. J. Nutr., 104;1024–1032, 1974.PubMedGoogle Scholar
  47. Ingle, D. J. The role of the adrenal cortex in homeostasis. Pediatrics, 17:407–413, 1956.PubMedGoogle Scholar
  48. Isgrig, F. A., and Ayres, J. J. Some behavioral effects of two experimental synthetic nutrients. Psychopharmacologia, 12: 227–235, 1968.PubMedCrossRefGoogle Scholar
  49. Izquierdo, I., Fernandes, J., Oliveira, R., and Settineri, F. Effect of daily saline, drug or blank injections on the susceptibility to the convulsant effect of drugs. Pharmacol. Biochem. Behav., 3:721–722, 1975.PubMedCrossRefGoogle Scholar
  50. Kalant, H., LeBlanc, A. E., and Gibbins, R. J. Tolerance to and dependence on some non-opiate psychotropic drugs, Pharmacol. Rev. 23:135–191, 1971.PubMedGoogle Scholar
  51. Kawashima, K., and Glass, G. B. J. Alcohol injury to gastric mucosa in mice and its potentiation by stress. Am. J. Dig. Dis., 20, 162–172, 1975.PubMedCrossRefGoogle Scholar
  52. Kesaniemi, Y. A. Ethanol and acetaldehyde in the milk and peripheral blood of lactating women after ethanol administration. J. Obstet. Gynaecol. Br. Commonw., 81:84–86, 1974.PubMedCrossRefGoogle Scholar
  53. Koivula, T., and Lindros, K. O. Effects of long-term ethanol treatment on aldehyde and alcohol dehydrogenase activities in rat liver. Biochem. Pharmacol., 24, 1937–1942, 1975.PubMedCrossRefGoogle Scholar
  54. Lampe, K. F., and Easterday, O. D. A note on the contraindication to propylene glycol as a solvent in toxicity studies. J. Am. Pharm. Assoc., 42:445, 1953.CrossRefGoogle Scholar
  55. Leevy, C. M., and Baker, J. H. Vitamins and alcoholism. Am. J. Clin. Nutr., 21, 1325–1328, 1968.PubMedGoogle Scholar
  56. Lester, D., and Greenberg, L. A. The inhalation of ethyl alcohol by man. Q. J. Stud. Alcohol, 12 167–178, 1951.Google Scholar
  57. Lieber, C. S., Jones, D. P., and De Carli, L. M. Effects of prolonged ethanol intake: production of fatty liver despite adequate diets. J. Clin. Invest., 44:1009–1021, 1965.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Long, S. Y. Hair-nibbling and whisker-trimming as indicators of social hierarchy in mice. Anim. Behav., 20: 10–12, 1972.PubMedCrossRefGoogle Scholar
  59. Lust, W. D., and Passonneau, J. V. Cyclic nucleotides in murine brain. Effect of hypothermia on adenosine 3’5’ monophosphate, glycogen Phosphorylase, glycogen synthase and metabolites following maximal electroshock or decapitation. J. Neurochem., 26:11–16, 1976.PubMedCrossRefGoogle Scholar
  60. Majchrowicz, E. Induction of physical dependence upon ethanol and the associated behavioral changes in rats. Psychopharmacologia, 43:245–254, 1975.PubMedCrossRefGoogle Scholar
  61. Matzdorff, F. 1st der Verlauf der Alcohol Kurve in der Milch stillender Frauen von der Milchbildung und Milchausscheidung abhaengig? Klin. Wochenschr., 21:131–132, 1942.CrossRefGoogle Scholar
  62. Mello, N. K. Animal models for the study of alcohol addiction. Psychoneuroendocrino1ogy, 1:347–357, 1976.CrossRefGoogle Scholar
  63. Mezey, E. Intestinal function in chronic alcoholism. Ann. N.Y. Acad. Sei., 252:215–227, 1975.CrossRefGoogle Scholar
  64. Mullins, L. J. Anesthetics. In A. Lajtha (Ed.). Handbook of Neurochemistry, Vol. VI, pp. 395–421, New York, Plenum Press, 1971.Google Scholar
  65. Neville, J. N., Eagles, J. A., Sampson, G., and Olson, R. E. Nutritional status of alcoholics. Am. J. Clin. Nutr., 21:1328–1340, 1968.Google Scholar
  66. Noble, E. P. Ethanol and adrenocortical stimulation in inbred mouse strains. In N. K. Mello and J. H. Mendelson (Eds.), Recent Advances in Studies of Alcoholism, pp. 72–106. Washington, D.C., U.S. Government Printing Office, 1971.Google Scholar
  67. Olow, J. Ueber den Uebergang des Aethylalcohols in die Milch stillender Frauen. Biochem. Z., 134:553–558, 1923.Google Scholar
  68. Parker, L. F., and Radow, B. L. Isolation stress and volitional ethanol consumption in the rat. Physiol. Behav., 12:1–3, 1974.PubMedCrossRefGoogle Scholar
  69. Pelz, W. E., Whitney, G., and Smith, J. C. Genetic influences on saccharin preferences in mice. Physiol. Behav., 10; 263–265, 1973.PubMedCrossRefGoogle Scholar
  70. Randall, C. L., and Lester, D. Differential effects of ethanol and phenobarbital on sleep time in C57BL and BALB mice. J. Pharmacol. Exp. Ther., 188:27–33, 1974.PubMedGoogle Scholar
  71. Rappoport, D. A., Fritz, R. R., and Yamagami, S. Development. In A. Lajtha (Ed.), Handbook of Neurochemistry, Vol. 5, pp. 439–479. New York, Plenum Press, 1971.Google Scholar
  72. Redmond, P. G., and Cohen G. Sex difference in acetaldehyde exhalation following ethanol administration in C57BL mice. Nature, 236:117–119, 1972.PubMedCrossRefGoogle Scholar
  73. Roberts, S., and Morelos, B. S. Regulation of cerebral metabolism of amino acids. IV. Influence of amino acid levels on leucine uptake, utilization and incorporation into protein in vivo. J. Neurochem., 12:373–387, 1965.PubMedCrossRefGoogle Scholar
  74. Rodgers, D. A. Factors underlying differences in alcohol preference among inbred strains of mice. Psychosom. Med., 28:498–513, 1966.Google Scholar
  75. Rodgers, D. A., Ward, P. A., Thiessen, D. D., and Whitworth, N. S. Pathological effects of prolonged voluntary consumption of alcohol by mice. Q. J. Stud. Alcohol, 28:618–630, 1967.PubMedGoogle Scholar
  76. Russel, K. E., and Stern, M. H. Sex and strain as factors in voluntary alcohol intake. Physiol. Behav., 10:641–642, 1973.CrossRefGoogle Scholar
  77. Shuster, L., and Hannam, R. V. The indirect inhibition of protein synthesis in vivo by chlorpromazine. J. Biol. Chem., 239:3401–3406, 1964.PubMedGoogle Scholar
  78. Sohler, A., Burgio, P., and Pellerin, P. Changes in drinking behavior in rats in response to large doses of alcohol. Q. J. Stud. Alcohol, 30:161–164, 1969.PubMedGoogle Scholar
  79. Sparber, S. B. Effects of drugs on the biochemical and behavioral responses of developing organisms. Fed. Proc., 31:74–80, 1972.PubMedGoogle Scholar
  80. Sprague, G., and Craigmill, A. Behavioral ad metabolic interaction of propylene glycol vehicle and A Δ9-tetrahydrocannabinol. Res. Commun. Chem. Pathol. Pharmacol., 14:739–742, 1976.Google Scholar
  81. Stern, W. C., Forbes, W. B., Resnick, O., and Morgane, P. J. Seizure susceptibility and brain amine levels following protein malnutrition during development in the rat. Brain Res., 79:375–384, 1974.PubMedCrossRefGoogle Scholar
  82. Sze, P. Y. The permissive role of glucocorticoids in the development of ethanol dependence and tolerance. Drug Alcohol Depend., 2:381–396, 1977.PubMedCrossRefGoogle Scholar
  83. Tewari, S., Goldstein, M. A., and Noble, E. P. Alterations in cell-free brain protein synthesis following ethanol withdrawal in physically dependent rats. Brain Res., 126: 509–518, 1977.PubMedCrossRefGoogle Scholar
  84. Thor, D. H., Weisman, M. H., and Boshka, S. C. Preparation of alcohol solutions for behavioral research. Q. J. Stud. Alcohol, 28:342–345, 1967.PubMedGoogle Scholar
  85. Veloso, D., Passonneau, J. V., and Veech, R. L. The effects of intoxicating doses of ethanol upon intermediary metabolism in the rat brain. J. Neurochem., 19:2679–2686, 1972.PubMedCrossRefGoogle Scholar
  86. Vesell, E. S., Lang, M. C., White, W. J., Pasananti, G. T., and Tripp, S. L. Hepatic drug metabolism in rats: impairment in a dirty environment. Science, 179:896–897, 1973.PubMedCrossRefGoogle Scholar
  87. Walker, D. W., and Freund, G. Impairment of shuttle box avoidance learning following prolonged alcohol consumption in rats. Physiol. Behav., 7:773–778, 1971.PubMedCrossRefGoogle Scholar
  88. Walker, D. W., Hunter, B. E., and Riley, J. A behavioral and electrophysiological analysis of ethanol dependence in the rat. Adv. Exp. Biol. Med. 59:353–372, 1975.Google Scholar
  89. Wallgren, H., and Barry, H., III. Actions of Alcohol, Vol I, II. New York, Elsevier, 1970.Google Scholar
  90. Wang, J., Marvin, M., Abel, B., and Pierson, R. N., Jr. Effects of chronic alcohol exposure on growth and nutrition in rats. Ann. N.Y. Acad. Sei., 273:205–211, 1976.CrossRefGoogle Scholar
  91. Westerfeld, W. W., and Doisy, E. A., Jr. Alcohol metabolism as related to the production of thiamine deficiency. J. Nutr., 30:127–136, 1945.Google Scholar
  92. Weyne, J., Van Leuven, F., and Leusen, I. Glutamate and glutamine in the brain: influence of acute pCO2 changes in normal rats and in rats under sustained hypercapnia or hypocapnia. Life Sei., 12:211–218, 1973.CrossRefGoogle Scholar
  93. Yuwiler, A. Stress. In A. Lajtha (Ed.), Handbook of Neurochemistry. Vol. 6, pp. 103–171. New York, Plenum Press, 1971.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Gerhard Freund
    • 1
  1. 1.Veterans Administration Hospital and Departments of Medicine and Neuroscience, College of MedicineUniversity of FloridaGainesvilleUSA

Personalised recommendations