Chemical Sympathectomy Due to Tetrahydroisoquinolines Derived from Adrenaline

  • Walter Osswald
  • Isabel Azevedo
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 126)


A long time ago, Toscano-Rico and Malafaya-Baptista (1935) incubated adrenaline with acetaldehyde, and attributed the loss of activity they observed to the formation of a condensation product, further suggesting that this reaction might occur in vivo. Non-enzymatic condensation of catecholamines with aldehydes is known to constitute the chemical process involved in fluorescence microscopy as well as in the formation of tetrahydropapaveroline (Holtz et al, 1964)


Nerve Terminal Condensation Product Adrenergic Nerve Isoquinoline Alkaloid Chemical Sympathectomy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azevedo, I. and Osswald, W. Adrenergic nerve degeneration induced by condensation products of adrenaline and acetaldehyde. Naunyn-Schmiedeberg’s Arch. Pharmacol. 300, 139–144 (1977).CrossRefGoogle Scholar
  2. Cohen, G. Tetrahydroisoquinoline alkaloids in the adrenal medulla after perfusion with “blood concentrations” of 14C-acetalhyde. Biochem. Pharmacol. 20, 1757–1761 (1971).PubMedCrossRefGoogle Scholar
  3. Cohen G., Collins, M. Alkaloids from catecholamines in adrenal tissue: possible role in alcoholism. Science, 167, 1749–1751 (1970).PubMedCrossRefGoogle Scholar
  4. Cohen, G., Mytilineou, C., Barrett, R. 6,7-dihydroxytetrahydro-isoquinoline: uptake and storage by peripheral sympathetic nerve of the rat. Science, 175, 1269–1272 (1972).PubMedCrossRefGoogle Scholar
  5. Collins, M.A., Bigdeli, M.G. Tetrahydroisoquinolines in vivo. I Rat brain formation of salsolinol, a condensation product of dopamine and acetaldehyde, under certain conditions during ethanol intoxication. Life Sci., 16585–601 (1975).Google Scholar
  6. Collins, M.A., Cohen, G. Isoquinoline alkaloid biosynthesis from adrenal catecholamines during 14C-methyl alcohol metabolism in rats. Fed. Proc., 29, 608 (1970).Google Scholar
  7. Finch, L., Haeusler, G., Thoenen, H. A comparison of the effect of chemical sympathectomy by 6-OHDA in new born and adult rats. Br. J. Pharmacol., 47, 249–260 (1973).PubMedCrossRefGoogle Scholar
  8. Greenberg, R.S., Cohen, G. Tetrahydroisoquinoline alkaloids: stimulated secretion from the adrenal medulla. J. Pharmacol, exp. Ther., 184, 119–128 (1973).Google Scholar
  9. Heikkila, R., Cohen, G., Dembiec, D. Tetrahydroisoquinoline alkaloids: uptake by rat brain homogenates and inhibition of catecholamine uptake. J. Pharmacol, exp. Ther., 179, 250–258 (1971).Google Scholar
  10. Holtz, P., Stock, K., Westermann, E. Pharmakologie des Tetrahydro-papaverolins und seine Entstehung aus Dopamin. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak., 248, 387–405 (1964).Google Scholar
  11. Locke, S., Cohen, G., Dembiec, D. Uptake and accumulation of 3H-6,7-dihydroxytetrahydroisoquinoline by peripheral sympathetic nerves in vivo. J. Pharmacol, exp. Ther., 187, 56–67 (1973).Google Scholar
  12. Mytilineou, C., Cohen, G., Barrett, R. Tetrahydroisoquinoline alkaloids: uptake and release by adrenergic nerves in vivo. Eur. J. Pharmacol., 25, 390–401 (1974).PubMedCrossRefGoogle Scholar
  13. Osswald, W., Polonia, J., Polonia, M.A. Preparation and pharmacological activity of the condensation product of adrenaline with acetaldehyde. Naunyn-Schmiedeberg’s Arch Pharmacol., 289, 275–290 (1975).CrossRefGoogle Scholar
  14. Pictet, A., Spengler, T. (1911)-after Whaley, W.M., Govindachari, R. Organic Reactions, vol. VI, pp. 151–190. New York: John Wiley and Sons, 1958.Google Scholar
  15. Sandler, M., Carter, S.B., Hunter, K.R., Stern, G.M. Tetrahydroisoquinoline alkaloids: in vivo metabolites of L-dopa in man. Nature, 241, 439–443 (1973).PubMedCrossRefGoogle Scholar
  16. Thoenen, H., Tranzer, J.-P. The pharmacology of 6-hydroxydopamine. Ann. Rev. Pharmacol., 13, 169–180 (1973).PubMedCrossRefGoogle Scholar
  17. Toscano-Rico, J., Malafaya-Baptista, A. Inactivation de l’adrenaline par le methylglyoxal, 1’aldehyde glycerique et 1’aldehyde acetique. C.R. Soc. Biol. (Paris) 120, 545–546 (1935).Google Scholar
  18. Tranzer, J.P., Thoenen, H. An electron microscopic study of selective acute degeneration of sympathetic nerve terminals after administration of 6-hydroxydopamine. Experientia, 24, 155–156 (1968).PubMedCrossRefGoogle Scholar
  19. Turner, A., Baker, K., Algeri, S., Frigerio, A., Garattini, S. Tetrahydropapaveroline: formation in vivo and in vitro in rat brain. Life Sci., 14, 2247–2257 (1974).PubMedCrossRefGoogle Scholar
  20. Walsh, M.J., Davis, V.E., Yamanaka, Y. Tetrahydropapaveroline: an alkaloid metabolite of dopamine in vitro. J. Pharmacol, exp. Ther., 174, 388–400 (1970).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Walter Osswald
    • 1
  • Isabel Azevedo
    • 1
  1. 1.Faculdade de MedicinaPortoPortugal

Personalised recommendations