Advertisement

Compatibility and Tensile Properties of PPO Blends

  • J. R. Fried
  • W. J. MacKnight
  • F. E. Karasz
Part of the Polymer Science and Technology book series (POLS, volume 11)

Abstract

Young’s modulus, yield (break) strength, and elongation to yield (break) have been measured for blends of poly (2,6-dimethyl-1, 4-phenylene oxide) (PPO) with polystyrene (PS), poly (p-chlorostyrene)(PpC1S), and random copolymers of styrene and p-chlorostyrene)(pC1S). The significant difference between blend compositions is the compatibility of PPO with each styrene polymer. Blends of PPO with PS or copolymers with 67.1 mole % or less pC1S are compatible (i.e. one Tg) and show small synergistic maxima in modulus, strength, and elongation as a function of PPO composition. These maxima correspond to observed maxima in packing density as a result of specific interactions contributing to blend compatibility. A rule of mixture for one phase systems with an adjustable compatibility parameter gives adequate fit to the observed composition dependence of the modulus.

In a narrow composition range between 67.8 and 68.6 mole % pC1S, copolymers exhibit partial miscibility with PPO. Two mixed composition phases are present. Moduli of these transitional blends follow the same form of synergistic dependence on blend composition as do the compatible blends but strength and elongation exhibit a sigmoidal relation to blend PPO content. At about 20% PPO, strength (and elongation) reach a minimum as predicted by a simple composite-model for a dispersed phase with good adhesion to the matrix. A maximum is reached at ca. 80% PPO at which composition blend test specimens yield prior to failure.

Blends of PPO with PpC1S and with copolymers of > 68.6 mole % pC1S exhibit a broader minimum in strength (and elongation) but a similar maximum at 80% PPO. Unlike the compatible and transitional blends, moduli follow a nonsynergistic composition dependence adequately represented by the series model for two phase systems.

Keywords

Tensile Property Polymer Blend Bead Composite Perfect Adhesion Macrophase Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.R. Paul, C.E. Vinson, and C.E. Locke, Polym. Eng. Sci., 12, 157 (1972)CrossRefGoogle Scholar
  2. 2.
    a) L.W. Kleiner, F.E. Karasz, and W.J. MacKnight, SPE 36th Annual Technical Conference, Washington, D.C., April 24, 1978, pp. 243–248; Polym. Eng. Sci., 19 (7), 519 (1979); b) L.W. Kleiner, Ph.D. Dissertation, University of Massachusetts, 1976Google Scholar
  3. 3.
    A.F. Yee, Polym. Prepr., Amer. Chem. Soc., Div. Polym. Chem., 17 (1), 145 (1976); Polym. Eng. Sci., 17, 213 (1977)Google Scholar
  4. 4.
    S. Wellinghoff and E. Baer, Amer. Chem. Soc., Div. Org. Coatings Plast. Chem., Pap. 36 (1), 140 (1976); J. Appl. Polym. Sci., 22, 2025 (1978)Google Scholar
  5. 5.
    W.J. MacKnight, F.E. Karasz, and J.R. Fried, in “Polymer Blends” (D.R. Paul and S. Newman, eds.), Vol. I., pp. 185–242, Academic Press, New York, 1978Google Scholar
  6. 6.
    J.R. Fried, F.E. Karasz, and W.J. MacKnight, Macromolecules, 11, 150 (1978)CrossRefGoogle Scholar
  7. 7.
    a) F.E. Karasz, W.J. MacKnight, and J.J. Tkacik, Polym. Prepr., Amer. Chem. Soc., Div. Polym. Chem. 15 (1), 415 (1974); b) J.J. Tkacik, Ph.D. Dissertation, University of Massachusetts, 1976Google Scholar
  8. 8.
    A.R. Shultz and B.M. Beach, Macromolecules, 7, 902 (1974)CrossRefGoogle Scholar
  9. 9.
    P.R. Couchman, Macromolecules 11 (6), 1156 (1978)CrossRefGoogle Scholar
  10. 10.
    R.E. Wetton, W.J. MacKnight, J.R. Fried, and F.E. Karasz, Macromolecules, 11 158 (1978)CrossRefGoogle Scholar
  11. 11.
    J. Letz, J. Polym. Sci., Polym. Phys. Ed., 7, 1987 (1969)Google Scholar
  12. 12.
    B. Maxwell, SPE J., 28 (2), 24 (1972)Google Scholar
  13. 13.
    J.R. Fried, Ph.D. Dissertation, University of Massachusetts, 1976Google Scholar
  14. 14.
    W.J. Jackson, Jr., and J.R. Caldwell, J. Appl. Polym. Sci., 11, 227 (1967)CrossRefGoogle Scholar
  15. 15.
    N. Sundgren, G. Bergman, and Y.J. Shur, J. Appl. Polym. Sci., 22, 1255 (1978)CrossRefGoogle Scholar
  16. 16.
    G. Bergman, H. Bertilsson, and Y.J. Shur, J. Appl. Polym. Sci., 21, 2953 (1977)CrossRefGoogle Scholar
  17. 17.
    E.P. Cizek, U.S. Patent 3,383,435 (assigned to General Electric) August 11, 1967Google Scholar
  18. 18.
    L.E. Nielsen, “Mechanical Properties of Polymers and Composites” Marcel Dekker, Inc., New York, 1974, p. 397Google Scholar
  19. 19.
    Ibid., p. 401Google Scholar
  20. 20.
    L.J. Cohen and O. Ishai, J. Compos. Mater., 1, 390 (1967)CrossRefGoogle Scholar
  21. 21.
    L.E. Nielsen, “Predicting the Properties of Mixtures: Mixture Rules in Science and Engineering”, Marcel Dekker, Inc., New York, 1978, p. 22Google Scholar
  22. 22.
    S.T. Wellinghoff, J.L. Koenig, and E. Baer, J. Polym. Sci., Polym. Phys. Ed., 15, 1913 (1977)Google Scholar
  23. 23.
    K.L. Trachte and A.T. DiBenedetto, Int. J. Polym. Mater., 1, 75 (1971)CrossRefGoogle Scholar
  24. 24.
    A. Wambach, K. Trachte, and A. DiBenedetto, J. Comp. Mater., 2, 266 (1968)CrossRefGoogle Scholar
  25. 25.
    H. Van Oene, in “Polymer Blends” (D.R. Paul and S. Newman, eds.) Vol. 1, pp. 295–352, Academic Press, New York, 1978Google Scholar
  26. 26.
    L. Nicolais and A.T. DiBenedetto, J. Appl. Polym. Sci., 15, 1585 (1971)CrossRefGoogle Scholar
  27. 27.
    F. Bueche, “Physical Properties of Polymers”, New York, Wiley-Interscience, 1962, p. 202Google Scholar
  28. 28.
    L.R. Schmidt, J. Appl. Polym. Sci., 23, 2463 (1979)Google Scholar
  29. 29.
    R. Buchdahl, J. Polym. Sci., 28, 239 (1958)CrossRefGoogle Scholar
  30. 30.
    M. Schrager, J. Appl. Polym. Sci., 22, 2379 (1978)Google Scholar
  31. 31.
    L.E. Nielsen, J. Appl. Polym. Sci., 10, 97 (1966)Google Scholar
  32. 32.
    R.E. Lavengood, L. Nicolais, and M. Narkis, J. Appl. Polym. Sci., 17, 1173 (1973)CrossRefGoogle Scholar
  33. 33.
    A.S. Kenyon and H.J. Duffy, Polym. Eng. Sci., 7, 189 (1967)CrossRefGoogle Scholar
  34. 34.
    M.R. Piggott and J. Leidner, J. Appl. Polym. Sei., 18, 1619 (1974)CrossRefGoogle Scholar
  35. 35.
    L. Nicolais and M. Narkis, Polym. Eng. Sci., 11 (3), 194 (1971)CrossRefGoogle Scholar
  36. 36.
    L. Nicolais, E. Drioli, and R.F. Landel, Polymer, 14, 21 (1973)CrossRefGoogle Scholar
  37. 37.
    G.W. Brasell and K.B. Wischmann, SPE Regional Technical Conference on Advances in Reinforced Thermoplastics, El Segundo, California, Paper 1, pp. 1–16 (1972)Google Scholar

Copyright information

© American Institute of physics. reprinted with permission 1979

Authors and Affiliations

  • J. R. Fried
    • 1
  • W. J. MacKnight
    • 2
  • F. E. Karasz
    • 2
  1. 1.Department of Chemical and Nuclear Engineering and the Polymer Research CenterUniversity of CincinnatiCincinnatiUSA
  2. 2.Polymer Science and Engineering Department and the Materials Research LaboratoryUniversity of MassachusettsAmherstUSA

Personalised recommendations