Advertisement

Aspects of Relative Network Continuity and Physical Crosslinks Via an Analysis of Polystyrene/Polystyrene Homo-Interpenetrating Polymer Network Literature

  • D. L. Siegfried
  • D. A. Thomas
  • L. H. Sperling
Part of the Polymer Science and Technology book series (POLS, volume 11)

Abstract

Sequential interpenetrating polymer networks, IPN’s, are synthesized by swelling a crosslinked polymer I with monomer II, plus crosslinking and activating agents, and polymerizing II in situ. The materials are called homo-IPN’s if polymers I and II are chemically identical.

Because of the special swelling and mutual dilution effects encountered in sequential IPN’s, special equations were derived for their rubbery modulus and equilibrium swelling. The new equations were used to analyze polystyrene/polystyrene homo-IPN swelling and rubbery modulus data obtained by four different laboratories. In the fully swollen state, there was no evidence for IPN related physical crosslinks, but some data supported the concept of network I domination. In the bulk state, network I clearly dominates network II because of its greater continuity in space. The analysis of the data concerning the possible presence of added physical crosslinks in the bulk state yielded inconclusive results, but this latter is of special interest for modern network theories.

Keywords

Polymer Network Crosslink Density Single Network Swell State Modulus Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Flory, Proc. R. Soc. London, A., 351, 351–380 (1976).CrossRefGoogle Scholar
  2. 2.
    O. Kramer, V. Ty, and J. D. Ferry, Proc. Nat. Acad. Sci U. S., 69, 2216 (1972).CrossRefGoogle Scholar
  3. 3.
    R. L. Carpenter, O. Kramer, and J. D. Ferry, Macromolecules, 10, 117 (1977).CrossRefGoogle Scholar
  4. 4.
    P. J. Flory, Trans. Faraday Soc., 56, 772 (1960).CrossRefGoogle Scholar
  5. 5.
    O. Kramer, in Europhysics Conference Abstracts, 3C, “Structure and Properties of Polymer Networks”, European Physical Society, Warsaw, Poland, April 1979.Google Scholar
  6. 6.
    W. W. Graessley, Adv. Polym. Sci., 16 (1974).Google Scholar
  7. 7.
    H. M. James and E. Guth, J. Chem. Phys. 15, 669 (1947).CrossRefGoogle Scholar
  8. 8.
    B. N. Kolarz, J. Polym. Sci., 47, 197 (1974).Google Scholar
  9. 9.
    W. Trochimczuk, in Europhysics Conference Abstracts, 3C, “Structure and Properties of Polymer Networks”, European Physical Society, Warsaw, Poland, April 1979.Google Scholar
  10. 10.
    F. G. Hutchinson, R. G. C. Henbest, M. K. Leggett, U.S. 4, 062, 826 (1977)Google Scholar
  11. 11.
    H. L. Frisch, K. C. Frisch, and D. Klempner, Mod. Plast., 54, 76 (1977); ibid. 54, 84 (1977).Google Scholar
  12. 12.
    Yu. S. Lipatov and L. M. Sergeeva, Russian Chem. Rev., 45 (1), 63 (1976).CrossRefGoogle Scholar
  13. 13.
    D. A. Thomas and L. H. Sperling, Chapter 11 in Polymer Blends, D. Paul and S. Newman, Eds., Academic Press, 1978.Google Scholar
  14. 14.
    D. L. Siegfried, J. A. Manson and L. H. Sperling, J. Polym. Sci., Polym. Phys. Ed., 16, 583 (1978).CrossRefGoogle Scholar
  15. 15.
    J. R. Millar, J. Chem. Soc., 1311 (1960).Google Scholar
  16. 16.
    K. Shibayama and Y. Suzuki, Kobunshi Kagaku, 23, 24 (1966); (b) Rubber Chem. Technol., 40, 476 (1967).CrossRefGoogle Scholar
  17. 17.
    J. L. Thiele and R. E. Cohen, Polym. Eng. Sci., 19, 284 (1979).CrossRefGoogle Scholar
  18. 18.
    H. A. Clark, U.S. Pat. 3,527, 842 (1970).Google Scholar
  19. 19.
    J. J. P. Staudinger and H. M. Hutchinson, U.S. Pat. 2,539, 377 (1951).Google Scholar
  20. 20.
    Yu. S. Lipatov, V. F. Rosovizky and V. F. Babich, European Polym. J., 13, 651 (1977).CrossRefGoogle Scholar
  21. 21.
    K. J. Smith and R. J. Gaylord, J. Polym. Sci., A-2, 10, 283 (1972).Google Scholar
  22. 22.
    S. C. Kim, D. Klempner, K. C. Frisch, W. Radigan, and H. L. Frisch, Macromolecules, 9, 258 (1976).CrossRefGoogle Scholar
  23. 23.
    N. Devia-Manjarres, J. A. Manson, L. H. Sperling, and A. Conde, Polym. Eng. Sci., 18, 200 (1978).CrossRefGoogle Scholar
  24. 24.
    A. V. Tobolsky and M. C. Shen, J. Appl. Phys., 37, 1952 (1966).CrossRefGoogle Scholar
  25. 25.
    M. C. Shen, T. Y. Chen, E. H. Cirlin, and H. M. Gebhard, in “Polymer Networks: Structure and Mechanical Properties,” A. J. Chompff and S. Newman, Eds., Plenum, New York, 1971.Google Scholar
  26. 26.
    B. Meissner and I. Klier, in Europhysics Conference Abstracts, 3C, “Structure and Properties of Polymer Networks”, European Physical Society, Warsaw, Poland, April 1979.Google Scholar
  27. 27.
    P. J. Flory and J. Rehner, J. Chem. Phys., 11, 512 (1943).CrossRefGoogle Scholar
  28. 28.
    A. V. Galanti and L. H. Sperling, Polym. Eng. Sci., 10, 177 (1970).CrossRefGoogle Scholar
  29. 29.
    S. C. Misra, J. A. Manson, and L. H. Sperling, ACS Org. Coat. and Plast. Chem. Preprints, 39 (2), 146 (1978).Google Scholar
  30. 30.
    S. C. Misra, J. A. Manson, and L. H. Sperling, ACS Org. Coat. and Plast. Chem. Preprints, 39 (2), 152 (1978).Google Scholar
  31. 31.
    P. J. Flory, in Europhysics Conference Abstracts, 3C, “Structure and Properties of Polymer Networks”, European Physical Society, Warsaw, Poland, April 1979.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • D. L. Siegfried
    • 1
  • D. A. Thomas
    • 1
  • L. H. Sperling
    • 1
  1. 1.Materials Research Center, Coxe Lab #32Lehigh UniversityBethlehemUSA

Personalised recommendations