Real-Space Renormalization-Group Method for Quantum Systems

  • R. Jullien
  • K. A. Penson
  • P. Pfeuty
  • K. Uzelac
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 50)

Abstract

In contrast with classical systems, quantum systems exhibit fluctuations already at T = 0 due to the nature of quantum mechanics. A wide range of quantum systems show interesting transitions at T = 0 by varying a given parameter. This should be compared with the transitions in temperature of classical systems and, in many cases, a rigorous mapping has been established. The equivalent of a T = 0 quantum system in D dimension is generally a D+1 classical system. This comes from the fact that a quantum hamiltonian contains its own dynamics and thus the time plays the role of an extra dimentionality So, an interesting first step to understand the physics of quantum systems is to study their ground state properties. This is either an interesting problem in itself or an indirect way to study the classical equivalent.

Keywords

Entropy Hexa Hexagonal Coherence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.D. Drell, M. Weinstein and S. Yankielowicz, Phys.Rev. D 14, 487 (1976)ADSCrossRefGoogle Scholar
  2. 2.
    K.G. Wilson, Rev.Mod.Phys. 47, 773 (1975)ADSCrossRefGoogle Scholar
  3. 3.
    R. Jullien, P. Pfeuty, J. N. Fields and S. Doniach, Phys.Rev. B 18, 3568 (1978)ADSCrossRefGoogle Scholar
  4. 4.
    P. Feuty, Ann.Phys. 57, 79 (1970)ADSCrossRefGoogle Scholar
  5. 5.
    M. Suzuki, Prog.Theor.Phys. 46, 1337 (1971)ADSMATHCrossRefGoogle Scholar
  6. 6.
    R. Jullien, J. N. Fields and S. Doniach, Phys.Rev. B 16, 4889 (1977)ADSCrossRefGoogle Scholar
  7. 7.
    K. A.Penson, R. Jullien and P. Pfeuty, to appear in Phys.Rev. B (1 May 1979)Google Scholar
  8. 8.
    J.C. Le Guillou and J. Zinn-Justin, Phys.Rev.Lett. 39, 95 (1977)ADSCrossRefGoogle Scholar
  9. 9.
    G.H. Wannier, Phys.Rev. 79, 357 (1950)MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    K.A. Penson, R. Jullien and P. Pfeuty, to appear in J. of Phys. CGoogle Scholar
  11. 11.
    J. Stephenson, J. of Math.Physics 11, 420 (1970)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    M. Suzuki, Prog.Theor.Phys. 5, 1454 (1976)ADSCrossRefGoogle Scholar
  13. 13.
    R. Jullien and P. Pfeuty, to appear in Phys.Rev. B (1 May 1979)Google Scholar
  14. 14.
    K. A.Penson, R. Jullien and P. Pfeuty, to be publishedGoogle Scholar
  15. 15.
    K. Uzelac, P. Pfeuty and R.Jullien, to be publishedGoogle Scholar
  16. 16.
    R. Jullien, P. Pfeuty, J.N. Fields and S. Doniach, Proceeding of the conference on rare earths, St Pierre de Chartreuse (1978), to be published in Le Journal de Physique (France) April 1979.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • R. Jullien
    • 1
  • K. A. Penson
    • 1
  • P. Pfeuty
    • 1
  • K. Uzelac
    • 1
    • 2
  1. 1.Laboratoire de Physique des SolidesBât.510, Université Paris-SudOrsayFrance
  2. 2.Institute of Physics of the UniversityZagrebYougoslavia

Personalised recommendations