Fluctuations in Two-Dimensional Six-Vertex Systems

  • R. W. Youngblood
  • J. D. Axe
  • B. M. McCoy
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 50)


The character of polarization correlations in six-vertex systems will be discussed. Making use of a connection between the 1-d Heisenberg-Ising chain and the six-vertex problem, we draw upon existing results for the chain correlations to obtain information about long-wavelength polarization correlations in six-vertex models. These results are compared with a neutron scattering study of 2-d polarization correlations in the layered compound copper formate tetrahydrate. Because the six-vertex model is equivalent to a particular roughening model, these results also explicitly predict the critical behavior of that roughening model just above its roughening temperature. The results correspond to the predictions of Kosterlitz and Thouless for the phase transition in the 2-d Coulomb gas.


Instrumental Resolution Polarization Correlation Polarization Fluctuation Height Correlation Function Chain Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a review, see the article by E. H. Lieb and F. Y. Wu in “Phase Transitions and Critical Phenomena,” ed. C Domb and M. S. Green, Academic, New York (.1977).Google Scholar
  2. 2.
    R. Youngblood, J. D. Axe. and B. McCoy, submitted to Phys. Rev.Google Scholar
  3. 3.
    R. Youngblood and J. D. Axe, Phys, Rev. B17, 3639 (1978).ADSGoogle Scholar
  4. 4.
    For reviews, see J. D. Weeks, this volume; J. D. Weeks and G. H. Gilmer in “Advances in Chemical Physics,” ed. I. Prigogine and S. A. Rice, Vol. 40 (1979);Google Scholar
  5. 4a.
    H. Müller-Kvumbhaar in “1976 Crystal Growth and Materials,” North Holland, New York (1977).Google Scholar
  6. 5.
    J. M. Kosterlitz and D. J. Thouless, J. Phys. C6, 1181 (1973);ADSGoogle Scholar
  7. 5a.
    J. M. Kosterlitz, J. Phys. C7, 1046 (1974). A review is given by A. P. Young in this volume.ADSGoogle Scholar
  8. 6.
    R. J. Baxter, Ann. Phys. (N.Y.) 70, 193 (1972).MathSciNetADSMATHCrossRefGoogle Scholar
  9. 7.
    B. Sutherland, Phys. Lett. 26A, 532 (1968).ADSGoogle Scholar
  10. 8.
    H. van Beijeren, Phys. Rev. Lett. 38, 993 (1977).ADSCrossRefGoogle Scholar
  11. 9.
    B. M. McCoy and T. T. Wu, Nuovo Cimento 56B, 311 (1968).ADSGoogle Scholar
  12. 10.
    A. Luther and I. Peschel, Phys. Rev. B12, 3908 (1975).ADSGoogle Scholar
  13. 11.
    H. C. Fogedby, J. Phys. C11, 4767 (1978).ADSGoogle Scholar
  14. 12.
    J. D. Johnson, S. Krinsky, and B. M. McCoy, Phys. Rev. A8 2526 (1973).ADSGoogle Scholar
  15. 13.
    S. T. Chui and J. D. Weeks, Phys. Rev. B14, 4978 (1978).ADSGoogle Scholar
  16. 14.
    W. J. Shugard, J. D. Weeks and G. H. Gilmer, Phys. Rev. Lett. 41, 1399 (1978).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • R. W. Youngblood
    • 1
  • J. D. Axe
    • 1
  • B. M. McCoy
    • 2
  1. 1.Physics DepartmentBrookhaven National LaboratoryUptonUSA
  2. 2.Institute of Theoretical PhysicsState University of New York at Stony BrookStony BrookUSA

Personalised recommendations