The Dislocation Theory of Melting: History, Status, and Prognosis

  • R. M. J. Cotterill
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 50)


Of all the physical properties of a crystal, its ultimate transition to the liquid state, at a sufficiently high temperature, is one of the most mysterious. It is surprising that no widely-accepted theory of melting has yet emerged, but the same is true of the liquid state itself, and it could well be that a full understanding of both problems will come simultaneously. The aim of this brief review is a commentary on one particular melting model: the dislocation theory of melting. According to this, melting occurs through the sudden catastrophic proliferation of dislocations. The model usually assumes that this implies acceptance of a picture of the liquid state in which the latter is essentially a crystal filled to saturation with dislocations, though it might later transpire that this is not an absolutely necessary consequence of dislocation mediated melting.


Liquid State Burger Vector Melting Transition Dislocation Theory Core Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. F. Mott and R.W. Gurney, Trans. Faraday Soc. 35, 364 (1939).CrossRefGoogle Scholar
  2. [2]
    W. L. Bragg, Symposium on Internal Stresses (Institute of Metals, London, 1947) p. 221.Google Scholar
  3. [3]
    R.M.J. Cotterill and M. Doyama, Phys. Rev. 145, 465 (1966).ADSCrossRefGoogle Scholar
  4. [4]
    W. Shockley, l’Etat Solide (Inst. International de Physique Solvay, Brussels, 1952) p. 431.Google Scholar
  5. [5]
    A. Ookawa, J. Phys. Soc. Japan 15, 70 (1960)CrossRefGoogle Scholar
  6. [6]
    S. Mizushima, J. Phys. Soc. Japan 15, 70(1960)CrossRefGoogle Scholar
  7. [7]
    D. Kuhlmann-Wilsdorf, Phys. Rev. 140, A1599 (1965)ADSCrossRefGoogle Scholar
  8. [8]
    S.F. Edwards, Polymer 17, 933(1976)Google Scholar
  9. [9]
    R.M.J. Cotterill (to be published)Google Scholar
  10. [10]
    R.M.J. Cotterill and L.B. Pedersen, Solid State Communications 10, 439(1972)Google Scholar
  11. [11]
    R.M.J. Cotterill, in High Temperature Materials Phenomena, ed. J.G. Rasmussen (Polyteknisk Forlag, 1972) p. 285Google Scholar
  12. [12]
    R.M.J. Cotterill, W. Damgaard Kristensen, and E.J. Jensen, Phil. Mag. 30, 245 (1974)ADSCrossRefGoogle Scholar
  13. [13]
    R.M.J. Cotterill, Phil. Mag. 32, 1283 (1975)ADSCrossRefGoogle Scholar
  14. [14]
    R.K. Crawford, Bull. Amer. Phys. Soc. 24, 385(1979)Google Scholar
  15. [15]
    R.K. Crawford (to be published).Google Scholar
  16. [16]
    R.M.J. Cotterill and J. Klæstrup Kristensen, Phil. Mag. 36, 453 (1977).ADSCrossRefGoogle Scholar
  17. [17]
    R.M.J. Cotterill, Physica Scripta (in the press).Google Scholar
  18. [18]
    R.M.J. Cotterill, Phys. Rev. Letters (in the press).Google Scholar
  19. [19]
    R.M.J. Cotterill, E.J Jensen, W. Damgaard Kristensen, R. Paetsch, and P. O. Esbjørn, J. de Physique 36, C2–35 (1975).Google Scholar
  20. [20]
    S. F. Edwards and M. Warner (to be published).Google Scholar
  21. [21]
    F.C. Frank and J.W. Steeds, in The Physics of Metals 2, ed. P.B. Hirsch (Cambridge University Press, 1975) p. 68.Google Scholar
  22. [22]
    J.J. Gilman, J. Appl. Phys. 44, 675 (1973).ADSCrossRefGoogle Scholar
  23. [23]
    M.F. Ashby and J. Logan, Scripta Metall. 7, 513(1973).CrossRefGoogle Scholar
  24. [24]
    V.F. Weisskopf, Trans. New York Acad. Sci. 38, 202 (1977).Google Scholar
  25. [25]
    J.M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 118. (1973).CrossRefGoogle Scholar
  26. [26]
    B.I. Halperin and D.R. Nelson, Phys. Rev. Letters 41, 121 (1978).MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    D. Frenkel and J. P. McTague, Bull. Amer. Phys. Soc. 24, 362 (1979).Google Scholar
  28. [28]
    M. Toda, J. Phys. Soc. Japan 22, 431 (1967).CrossRefGoogle Scholar
  29. [29]
    R.M.J. Cotterill, Physica Scripta 18, 37(1978).ADSCrossRefGoogle Scholar
  30. [30]
    A. Seeger and A. Kochendörfer, Z. Phys. 130, 321 (1951).ADSMATHCrossRefGoogle Scholar
  31. [31]
    F.A. Lindemann, Z. Phys. 11, 609 (1910).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • R. M. J. Cotterill
    • 1
  1. 1.Department of Structural Properties of MaterialsThe Technical University of DenmarkLyngbyDenmark

Personalised recommendations