Activation Detectors and Their Gamma Spectrum Analysis

  • M. J. Koskelo
  • J. T. Routti
Part of the Ettore Majorana International Science Series book series (EMISS, volume 3)


Measurement of radiation fields in or near nuclear reactors and high energy accelerators is of importance in estimating radiation dose rates, radiation damage and shielding problems as well as in verifying results of computational methods. Such measurements must often be made in difficult environments, which excludes the possibility of using elaborate spectrometers, for instance. Activation detectors are well suited for such applications. By the proper choice of detector materials and composition, one can meet the requirements for selectivity and sensitivity for widely different radiation fields. The use of many detectors, in combination with unfolding methods, makes it possible to obtain information also of the energy spectra of particles.


Activation Detector Gamma Spectrum Analysis Gamma Spectrum Resonance Detector Saturation Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Neutron Fluence Measurements, IAEA Technical Reports Series No. 107 (1970).Google Scholar
  2. 2.
    J.T. Routti and J.V. Sandberg, Unfolding Techniques for Activation Detector Analysis (see Lecture 24 in this volume).Google Scholar
  3. 3.
    K. Maunula, Multicomponent Activation Detectors for Reactor Neutron Spectroscopy (M.Sc thesis), Helsinki University of Technology, Department of Technical Physics (in Finnish) (1977).Google Scholar
  4. 4.
    J.T. Routti, Multicomponent Activation Detectors for Reactor Neutron Spectroscopy: Proposal and Optimization, Helsinki University of Technology, Department of Technical Physics Report (1975) (unpublished).Google Scholar
  5. 5.
    Radiation Problems Encountered in the Design of Multi-GeV Research Facilities, Report 71-21, CERN (1971).Google Scholar
  6. 6.
    J.T. Routti, Physics Scripta, 10, 107 (1974).ADSCrossRefGoogle Scholar
  7. 7.
    G. Rudstam, Z. Naturforsch., 21a, 1027 (1966).ADSGoogle Scholar
  8. 8.
    J.T. Routti and S.G. Prussin, Nucl. Instr. Meth. 72, 125 (1969).CrossRefGoogle Scholar
  9. 9.
    T. Inouye, T. Harper and N.C. Rasmussen, Nucl. Instr. Meth. 67, 125 (1969).CrossRefGoogle Scholar
  10. 10.
    H. Weigel, J. Dauk, J. of Radioanal. Chem. 23, 171 (1974).CrossRefGoogle Scholar
  11. 11.
    L.T. Felawka, J.G. Molnar, J.D. Chen and D.G. Boase, GAMAN, A Computer Program for the Qualitative and Quantitative Evaluation of Ge(Li) Gamma-Ray Spectra, Report AECL-4217, Atomic Energy of Canada Limited (1973).Google Scholar
  12. 12.
    V. Barnes, IEEE Trans. Nucl. Sci. NS-15, 377 (1968).Google Scholar
  13. 13.
    N. Sasamoto, K. Koyama, S. Tanaka, Nucl. Instr. & Meth. 125, 507 (1975).ADSCrossRefGoogle Scholar
  14. H.P. Yule, Proceedings of the 1968 Int. Conf. on Modern Trends in Activation Analysis, Gaithersburg Maryland, USA, Vol. II, p. 1155 (1968).Google Scholar
  15. 15.
    J.T. Routti, SAMPO: Program for Computer Analysis of Gamma Spectra from Ge(Li) Detectors, Report UCRL-19452, Lawrence Berkeley Laboratory (1969).CrossRefGoogle Scholar
  16. 16.
    M. Giannini, P.R. Oliva and M.C. Ramorino, Automatic Peak Identification in Analysis of Gamma-Ray Spectra Obtained with Ge(Li) Detectors, Report CNEN-RT/FI-72-14, Comitato Nazionale per l’Energia Nucleare (Rome)(1972).Google Scholar
  17. 17.
    B. Nyman, Nucl. Instr. & Meth. 108, 237 (1973).ADSCrossRefGoogle Scholar
  18. 18.
    R.G. Helmer and M.H. Putnam, GAUSS V: A Computer Program for the Analysis of Gamma-Ray Spectra from Ge(Li) Spectrometers, Report ANCR-1043, Aerojet Nuclear Company (1972).Google Scholar
  19. 19.
    A. Robertson, W.C. Prestwich and T.J. Kennett, Nucl. Instr. & Meth. 82, 141 (1970).CrossRefGoogle Scholar
  20. 20.
    W.W. Black, Nucl. Instr. & Meth. 71, 317 (1969).ADSCrossRefGoogle Scholar
  21. 21.
    A.L. Connelly and W.W. Black, Nucl. Instr. & Meth. 82, 141 (1970).ADSCrossRefGoogle Scholar
  22. 22.
    G.C. Christensen, M.J. Koskelo and J.T. Routti, Gamma Spectrum Storage and Analysis Program SAMPO 76 with Nuclide Identifi-cation, Report HS-RP/015, CERN HS-Division (1977).Google Scholar
  23. 23.
    S. Toivonen, Analysis and Identification of Gamma Spectra Using a Minicomputer (M.Sc. thesis), Helsinki University of Technology, Department of Technical Physics (in Finnish)(1978).Google Scholar
  24. 24.
    J.T. Routti, Graphical Method for Nuclide Identification in Ge(Li) Gamma Spectra and Application to Spallation Studies, Report TKK-F-A227, Helsinki University of Technology, Depart-ment of Technical Physics (1974).Google Scholar
  25. 25.
    R. Gunnink and J.B. Niday, Computerized Quantitative Analysis by Gamma-Ray Spectrometry, Vols. I-IV, Report UCRL-51061, Lawrence Berkeley Laboratory (1972).Google Scholar
  26. 26.
    J.T. Routti, M.J. Koskelo, M.O. Enqvist, Gamma Spectrum Analysis Program SAMPO with Accelerated Peak Fitting and Nuclide Identification, presented at the ANS Topical Conference on Computers in Activation Analysis and Gamma-Ray Spectroscopy, May 1–4, 1978 Puerto Rico.Google Scholar
  27. 27.
    J.T. Routti, Nucl. Sci. Eng. 5, 41 (1974).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • M. J. Koskelo
    • 1
  • J. T. Routti
    • 1
  1. 1.Department of Technical PhysicsHelsinki University of TechnologyEspoo 15Finland

Personalised recommendations