Advertisement

The HETC Hadronic Cascade Code

  • Tony W. Armstrong
Part of the Ettore Majorana International Science Series book series (EMISS, volume 3)

Abstract

There are basically four computer codes in the world today that treat the three-dimensional development of hadronic cascades in thick targets, and these codes can be classified into two categories according to their treatment of nonelastic nuclear interactions. All four of these codes use Monte Carlo methods.

Keywords

Monte Carlo Calculation Nuclear Interaction Residual Nucleus Transport Code Intranuclear Cascade 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. W. Armstrong and K. C. Chandler, “HETC — A High Energy Transport Code”, Nucl. Sci. and Engr. 49, 110 (1972).Google Scholar
  2. 2.
    V. S. Barashenkov, N. M. Sobolevskii, and V. D. Toneev, “The Penetration of Beams of High-Energy Particles Through Thick Layers of Material”, Atomnaya Energiya 32, 217 (1972).Google Scholar
  3. 3.
    J. Ranft, “Estimation of Radiation Problems Around High Energy Accelerators Using Calculations of the Hadronic Cascade in Matter”, Particle Accelerators 3, 129 (1972).Google Scholar
  4. 4.
    A. Van Ginneken, “CASIM, Program to Simulate Hadronic Cascades in Bulk Matter”, Fermilab Report FN-272 (1975).Google Scholar
  5. 5.
    W. A. Coleman and T. W. Armstrong, “NMTC — A Nucleon — Meson Transport Code”, Nucl. Sci. and Engr. 43, 353 (1971).Google Scholar
  6. 6.
    T. W. Armstrong, R. G. Alsmiller, Jr., K. C. Chandler, and B. L. Bishop, “Monte Carlo Calculations of High-Energy Nucleon-Meson Cascades and Comparison with Experiment,” Nucl. Sci. and Engr. 49, 82 (1972).Google Scholar
  7. 7.
    T. A. Gabriel, R. G. Alsmiller, Jr., and M. P. Guthrie, “An Extrapolation Method for Predicting Nucleon and Pion Differential Production Cross Sections from High-Energy (3 GeV) Nucleon-Nucleus Collisions,” Oak Ridge National Laboratory Report ORNL-4542 (1970).Google Scholar
  8. 8.
    T. A. Gabriel, R. T. Santoro and J. Barish, “A Calculational Method for Predicting Particle Spectra From High Energy Nucleon-Pion Collisions (3 GeV) with Protons”, Oak Ridge National Laboratory Report ORNL-TM-3615 (1971).Google Scholar
  9. 9.
    T. W. Armstrong and K. C. Chandler, “Analysis Subroutines for the Nucleon-Meson Transport Code NMTC”, Oak Ridge National Laboratory Report ORNL-4736 (1972).Google Scholar
  10. 10.
    T. W. Armstrong and R. G. Alsmiller, Jr., “Calculation of the Residual Proton Dose Rate Around High-Energy Proton Accelerators,” Nuclear Science and Engineering 38, 53 (1969).Google Scholar
  11. 11.
    R. G. Alsmiller, Jr., et al, “Photon Dose Rate From Induced Activity in the Beam Stop of a 400 GeV Proton Accelerator”, Nucl. Instr. Meth. 155, 399 (1978).CrossRefGoogle Scholar
  12. 12.
    T. W. Armstrong and J. Barish, “Calculation of the Residual- Photon Dose Rate Due to the Activation of Concrete by Neutrons from a 3-GeV Proton Beam in Iron,” Nucl. Sci. and Engr. 38, 265 (1969).Google Scholar
  13. 13.
    T. W. Armstrong and J. Barish, “Calculated Activation of Copper and Iron by 3-GeV Protons,” Nucl. Sci. and Engr. 41, 443 (1970).Google Scholar
  14. 14.
    T. W. Armstrong and J. Barish, “Reduction of the Residual Photon Dose Rate Around High-Energy Proton Accelerators,” Nucl. Sci. and Engr. 40, 128 (1970).Google Scholar
  15. 15.
    R. G. Alsmiller, Jr., R. T. Santoro, J. Barish, and H. C. Clairborne, “Shielding of Manned Space Vehicles Against-Protons and Alpha Particles”, Oak Ridge Radiation Shielding Information Center Report ORNL-RSIC-35 (1972).Google Scholar
  16. 16.
    T. W. Armstrong, “Monte Carlo Calculations of Residual Nuclei Production in Thick Iron Targets Bombarded by 1- and 3-GeV Protons and Comparison with Experiment,” J. of Geophys. Res. 74, 1361 (1969).ADSCrossRefGoogle Scholar
  17. 17.
    T. W. Armstrong and R. G. Alsmiller, Jr., “Calculation of Cosomogenic Radionuclides in the Moon and Comparison with Apollo Measurements,” Proc. 2nd Lunar Sei. Conf., Geochim Cosmochim. Acta Suppl. 2, 2, 1729 (1971).Google Scholar
  18. 18.
    T. W. Armstrong, “Calculation of Lunar Photon Albedo from Galactic and Solar Proton Bombardment,” Geophy. Res. 77, 524 (1972).ADSCrossRefGoogle Scholar
  19. 19.
    T. W. Armstrong, B. L. Colborn and P. Read, “Calculations of the Radiation Background Produced in Jovian Satellites by Trapped Proton Bombardment,” SAI-76-658-LJ (1976).Google Scholar
  20. 20.
    T. W. Armstrong and K. C. Chandler, “Calculations of Neutron Flux Spectra Induced in the Earth’s Atmosphere by Galactic Cosmic Rays,” Geophys. Res. 78, 2715 (1973).ADSCrossRefGoogle Scholar
  21. 21.
    T. W. Armstrong, R. G. Alsmiller, Jr., and J. Barish, “Calculation of the Radiation Hazard at Supersonic Aircraft Altitudes Produced by an Energetic Solar Flare,” Nucl. Sci. and Engr. 37, 337 (1969).Google Scholar
  22. 22.
    T. W. Armstrong and K. C. Chandler, “Calculations Related to the Application of Negatively Charged Pions in Radiotherapy: Absorbed Dose, LET Spectra, and Cell Survival,” Rad. Res. 58, 293 (1974).CrossRefGoogle Scholar
  23. 23.
    T. W. Armstrong and K. C. Chandler, “Monte Carlo Calculations of the Dose Induced by Charged Pions and Comparison with Experiment,” Rad. Res. 52, 247 (1972).CrossRefGoogle Scholar
  24. 24.
    R. G. Alsmiller, et al., “Calculat ions Related to the Possible Use of Photons, Neutrons, Negatively Charged Pions, Protons, and Alpha Particles in Radiotherapy,” Rad. Res. 60, 369 (1974).CrossRefGoogle Scholar
  25. 25.
    T. A. Gabriel and B. L. Bishop, “Calculated Hadronic Transmission Through Iron Absorbers,” Nucl. Instr. Meth. 155, 81 (1978).CrossRefGoogle Scholar
  26. 26.
    T. A. Gabriel, et al., “Calculated Performance of a Mineral- Oil-Iron Ionization Spectrometer,” Nucl. Instr. Meth. 129, 409 (1975).CrossRefGoogle Scholar
  27. 27.
    T. A. Gabriel, et al., “Preliminary Design Calculations for an Ionization Spectrometer for Use in Colliding Beam Experiments,” Nucl. Instr. Meth. 130, 375 (1975).CrossRefGoogle Scholar
  28. 28.
    J. D. Amburgey and T. A. Gabriel, “Calculated Performance of a Segmented Pyramid-Shaped Calorimeter of Iron and Plastic,” Nucl. Instr. Meth. 133, 75 (1976).CrossRefGoogle Scholar
  29. 29.
    R. T. Santoro, et al., “The Calculated Response of a Liquid Scintillator Total-Absorption Hadron Calorimeter,” Nucl. Instr. Meth. 134, 87 (1976).CrossRefGoogle Scholar
  30. 30.
    T. A. Gabriel and W. Schmidt, “Calculated Performance of Iron- Plastic Calorimeters for Incident Hadrons with Energies of 5 to 75 GeV,” Nucl. Instr. Meth. 134, 271 (1976).CrossRefGoogle Scholar
  31. 31.
    T. A. Gabriel, “Uranium Liquid-Argon Calorimeters: A Calculational Investigation,” Nucl. Instr. Meth. 150, 145 (1978).CrossRefGoogle Scholar
  32. 32.
    T. W. Armstrong and K. C. Chandler, “Calculations Related to the Application of Silicon Detectors in Pion Radiobiology,” Nucl. Instr. and Meth. 120, 93 (1974).ADSCrossRefGoogle Scholar
  33. 33.
    T. W. Armstrong and K. C. Chandler, “Calculations of the Response of Silicon Detectors of Finite Radius toπ-Mesons Stopping in Tissue,” Nucl. Instr. and Meth. 123, 363 (1975).ADSCrossRefGoogle Scholar
  34. 34.
    T. W. Armstrong and K. C. Chandler, “Calculations on Tissue Equivalence for Stopping π-Mesons,” Oak Ridge National Laboratory Report 0RNL-TM-4499.Google Scholar
  35. 35.
    R. G. Alsmiller, Jr., T. W. Armstrong, and B. L. Bishop, “The Absorbed Dose and Dose Equivalent from Negatively and Positively Charged Pions, in the Energy Range 10 to 2000 MeV,” Nucl. Sci. Engr. 43, 257 (1971).Google Scholar
  36. 36.
    R. G. Alsmiller, Jr., T. W. Armstrong, and W. A. Coleman, “The Absorbed Dose and Dose Equivalent from Neutrons in the Energy Range 60 to 3000 MeV and Protons in the Energy Range 400 to 3000 MeV,” Nucl. Sci. and Engr. 42, 367 (1970).Google Scholar
  37. 37.
    T. W. Armstrong and B. L. Bishop, “Calculation of the Absorbed Dose and Dose Equivalent Induced by Medium-Energy Neutrons and Protons and Comparison with Experiment,” Rad. Res. 47, 581 (1971).CrossRefGoogle Scholar
  38. 38.
    T. W. Armstrong and K. C. Chandler, “Calculations of the Absorbed Dose and Dose Equivalent from Neutrons and Protons in the Energy Range from 3.5 GeV to 1.0 TeV,” Health Physics, 24, 277 (1973).CrossRefGoogle Scholar
  39. 39.
    T. W. Armstrong and B. L. Colborn, “LHI Code Development Study”, Science Applications, Inc. Report SAI-79-1040-LJ (1979).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Tony W. Armstrong
    • 1
  1. 1.Science Applications, Inc.La JollaUSA

Personalised recommendations