Advertisement

The Physics of Radiation Transport

  • Keran O’Brien
Part of the Ettore Majorana International Science Series book series (EMISS, volume 3)

Abstract

The Boltzmann equation is an integrodifferential equation describing the behavior of a dilute assemblage of corpuscles. It was derived by Ludwig Boltzmann in 1872 to study the properties of gases. It applies equally to the description of the behavior of “radiation” which, for the purpose of this paper, will comprise nuclei, leptons, mesons, baryons, and energetic photons.

Keywords

Boltzmann Equation Radiation Transport Scalar Flux Neutron Transport Discrete Ordinate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Radiation Dosimetry: Electrons with Initial Energies Between 1 and 50 MeV,” Report 21, ICRU Publications, Washington, D.C. (1972).Google Scholar
  2. 2.
    K. O’Brien. “Electron Dosimetry Using Monte Carlo Techniques,” this course.Google Scholar
  3. 3.
    K. O’Brien. Phys. Rev. D 5, 597 (1972).ADSGoogle Scholar
  4. 4.
    M. O. Larson, Ph.D. Thesis, University of Utah, 1968 (unpublished).Google Scholar
  5. 5.
    C. Castagnoli, A. DeMarco, A. Longhetto, and P. Penengo. Nuovo Cimento 35, 969 (1965).CrossRefGoogle Scholar
  6. 6.
    C. V. Achar, V. S. Narasimhan, P. V. Romana Murthy, D. R. Creed, J. L. Osborne, and A. W. Wolfendale. Proc. Phys. Soc. (London) 86, 1305 (1965).ADSCrossRefGoogle Scholar
  7. 7.
    S. Miyake, V. S. Narasimhan, and P. V. Romana Murthy. Nuovo Cimento 32, 1505 (1964).CrossRefGoogle Scholar
  8. 8.
    M. G. K. Menon, S. Naranan, V. S. Narasimhan, K. Hinotani, N. Ito, S. Miyake, D. R. Creed, J.L. Osborne, and A. W. Wolfendale. Can J. Phys. 46, 5344 (1968).CrossRefGoogle Scholar
  9. 9.
    B. S. Meyer, J. P. F. Sellschop, M. F. Crouch, W. R. Kropp, H. W. Sobel, H. S. Gurr, J. Lathrop, and F. Reines. Phys. Rev. D 1, 2229 ( 1970.ADSGoogle Scholar
  10. 10.
    P. H. Barrett, L. M. Bollinger, G. Cocconi, Y. Eisenberg, and K. Greisen. Rev. Mod. Phys. 24, 133 (1952).ADSCrossRefGoogle Scholar
  11. 11.
    L. M. Bollinger, Ph.D. Thesis, Cornell University, 1951 (unpublished).Google Scholar
  12. 12.
    C. Passow. “Phenomenologische Theorie zur Berechnung einer Kaskade aus schweren Teilchen (Nukleonenkaskade) in der Materie,” Deutches Elektronen Synchorotron Report DESY Notiz A 2. 85 (1962).Google Scholar
  13. 13.
    K. O’Brien. Nuovo Cimento 3A, 521 (1971).ADSCrossRefGoogle Scholar
  14. 14.
    F. Ashton and R. B. Coats. J. Phys. A1, 169 (1968).ADSGoogle Scholar
  15. 15.
    F. Ashton, N. I. Smith, K. King, and E. A. Mamidzian. Acta Physica Acad. Sci. Hung. 29, Suppl. 3, 25 (1970).Google Scholar
  16. 16.
    F. S. Aismiller. A General Category of Soluble Nucleon-Meson Cascade Equations, Oak Ridge Report ORNL-3746 (1965).Google Scholar
  17. 17.
    E. Jahnke and F. Emde. Tables of Functions with Formulae and Curves (Dover Publications, 1954 ).Google Scholar
  18. 18.
    B. G. Bennett and H. L. Beck. “Legendre, Tschebyscheff, and Half-Range Legendre Polynomial Solutions of the Gamma Ray Transport Equation in Infinite Homogeneous and Two Media Geometry,” USAEC Report HASL-185 (1967).Google Scholar
  19. 19.
    B. G. Carlson and K. D. Lathrop. “Transport Theory the Method of Discrete Ordinates,” in Computing Methods in Reactor Physics, H. Greenspan, C. N. Kelber, and D. Okrent, eds. ( Gordon and Breach, 1968 ).Google Scholar
  20. 20.
    L. L. Carter and E. D. Cashwell. Particle-Transport Simulation with the Monte Carlo Method ( Technical Information Center, USERDA, 1975 ).CrossRefGoogle Scholar
  21. 21.
    G. L. Burrows and D. B. MacMillan. Hucl. Sci, and Eng. 22, 384 (1965).Google Scholar
  22. 22.
    K. O’Brien. “Shielding Calculations for Broad Neutron Beams Normally Incident on Slabs of Concrete,” USAEC Report HASL-221 (1970).Google Scholar
  23. 23.
    R. G. Aismiller,Jr., F. R. Mynatt, J. Barish, and W. W. Engle, Jr. Nucl. Sci, and Eng. 36, 251 (1969).Google Scholar
  24. 24.
    M. Hammermesh. Group Theory and Its Application to Physical Problems (Addison Wesley Pub. Co., 1962 ).Google Scholar
  25. 25.
    H. S. Isbin. Introductory Nuclear Reactor Theory (Reinhold Pub. Co., 1963 ).Google Scholar
  26. 26.
    G. E. Hansen and H. A. Sandmeier. Nucl. Sci, and Eng. 22, 315 ( 1965.Google Scholar
  27. 27.
    S. A. W. Gerstl. “A New Concept for Deep Penetration Transport Calculations and Two New Forms of the Neutron Transport Equation,” Los Alamos Report LA-6628-MS (1976).CrossRefGoogle Scholar
  28. 28.
    M. L. Williams and W. W. Engle, Jr. Nucl. Sci, and Eng. 62, 92 (1977).Google Scholar
  29. 29.
    J. W. Painter. “An Alternative Approach to the Contributor Problem,” Los Alamos Report LA-7131-PR (1978).Google Scholar
  30. 30.
    A. Dubi, S. A. W. Gerstl, D. J. Dudziak. “Monte Carlo Aspects of Contributons,” Los Alamos Report LA-UR (1977).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Keran O’Brien
    • 1
  1. 1.Environmental Measurements LaboratoryU.S. Department of EnergyNew YorkUSA

Personalised recommendations