The Physics of Electromagnetic Cascade

  • Keran O’Brien
Part of the Ettore Majorana International Science Series book series (EMISS, volume 3)


When an electron with an energy of the order of one GeV or more is introduced in matter, it radiates photons of comparable energy. These photons produce negatron-positron pairs which radiate in their turn. Eventually, the energy of the original electron is divided in a “shower” or “cascade” (Fig. 1). When finally electrons are created, set in motion or have lost enough energy so that further energy losses will take place primarily through collision mechanisms rather than through radiation, they no longer contribute to the shower and the shower stops.


Pair Production Impact Parameter Radiation Length Total Electron Energy Incident Electron Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Fermi, J. Orear, A. W. Rosenfeld, and R. A. Schluter. Nuclear Physics ( University of Chicago Press, Chicago, 1951 ).Google Scholar
  2. 2.
    W. Heitler. The Quantum Theory of Radiation ( The Clarendon Press, Oxford, 1954.MATHGoogle Scholar
  3. 3.
    B. Rossi and K. Greisen. Revs. Mod. Phys. 13, 240 (1941).ADSCrossRefGoogle Scholar
  4. 4.
    B. Rossi. High-Energy Particles (Prentice-Hall, Inc., New York, 1952 ).Google Scholar
  5. 5.
    S. Hayakawa. Cosmic Ray Physics ( Wiley-Interscience, New York, 1969 ).Google Scholar
  6. 6.
    J. C. Butcher and H. Messel. Nucl. Phys. 20, 15 (1960).MATHCrossRefGoogle Scholar
  7. 7.
    R. R. Wilson. Phys. Rev. 86, 261 (1952).ADSCrossRefGoogle Scholar
  8. 8.
    H. A. Bethe and W. Heitler. Proc. Roy. Soc. (London), A146, 83 (1934).ADSCrossRefGoogle Scholar
  9. 9.
    N. F. Mott. Proc. Roy. Soc. (London), A124, 425 (1929).ADSMATHCrossRefGoogle Scholar
  10. 10.
    G. Moliere. Z. Naturforsch 2a, 133 (1947).ADSMATHGoogle Scholar
  11. 11.
    G. Moliere. Z. Naturforsch 3a, 78 (1948).ADSGoogle Scholar
  12. 12.
    L. N. Cooper and J. Rainwater. Phys. Rev. 97, 492 (1955).ADSMATHCrossRefGoogle Scholar
  13. 13.
    R. M. Sternheimer. Phys Rev. 88, 851 (1952).ADSCrossRefGoogle Scholar
  14. 14.
    T. W. Armstrong and R. G. Alsmiller, Jr. Nucl. Instrum. & Methods 82, 289 (1970).ADSCrossRefGoogle Scholar
  15. 15.
    P. A. M. Dirac. Proc. Camb. Phil. Soc. 26, 361 (1930).ADSMATHCrossRefGoogle Scholar
  16. 16.
    A. E. Chudakov. Izv. Akad. Nauk. USSR 19, 650 (1955).Google Scholar
  17. 17.
    G. Yekutieli. Nuovo Cimento 5, 1381 (1957).CrossRefGoogle Scholar
  18. 18.
    A. A. Varfolomeev, V. I. Glebov, E. I. Denisov, and A. S. Khlebnikov, Soc. J. Nucl. Phys. 23, 317 (1976) [translated from Yad. Fiz. 23, 604 (1976)].Google Scholar
  19. 19.
    M. L. Ter-Mikaelyan. Nucl. Phys. 24, 43 (1961).CrossRefGoogle Scholar
  20. 20.
    O. Klein and Y. Nishina. Z. Physik 52, 853 (1929).ADSMATHCrossRefGoogle Scholar
  21. 21.
    N. Barash-Schmidt, A. Barbaro-Galtieri, C. Bricman, R. L. Crawford, C. Dionisi, R. J. Hemingway, C. P. Horne, R. L. Kelly, M. J. Losty, M. Mazzucato, L. Montanet, A. Rittenberg, M. Roos, T. G. Trippe, G. P. Yost, and F. E. Armstrong. Phys. Lett. 75B, 1 (1978).CrossRefGoogle Scholar
  22. 22.
    H. L. Beck. “Energy Spectra from Coupled Electron-Photon Slowing Down,” U.S. Energy Research and Development Report HASL-309 (1976).Google Scholar
  23. 23.
    R. L. Ford and W. R. Nelson. “The EGS Code System, Computer Programs for the Monte Carlo Simulation of Electromagnetic Cascade Showers (Version 3),” Stanford Linear Accelerator Center Report SLAC-210 (1978).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Keran O’Brien
    • 1
  1. 1.Environmental Measurements LaboratoryU.S. Department of EnergyNew YorkUSA

Personalised recommendations