Advertisement

Development of the Lateral Geniculate Nucleus in Cats Raised with Monocular Eyelid Suture

  • S. Murray Sherman
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 27)

Abstract

Since the pioneering work of Wiesel and Hubel (1963a,b; 1965), neurobiologists have appreciated the kitten’s central visual pathways as an elegant model system for studies of the role of the postnatal environment in neural development. A particularly useful approach has been a comparison of the geniculocortical pathways in normally reared cats with those in cats raised with monocular eyelid closure. This paper concentrates on the developmental abnormalities seen in the lateral geniculate nucleus of such monocularly deprived cats. Although most studies of visually deprived cats have focused upon striate cortex, we have emphasized the lateral geniculate nucleus, because an understanding of cortical abnormalities requires a fairly complete description of the status of its geniculate inputs.

Keywords

Retinal Ganglion Cell Lateral Geniculate Nucleus Binocular Competition Spatial Acuity Monocular Deprivation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berkley, M. A., and Sprague, J. M. (1978). Behavioral analysis of the geniculocortical system in form vision. In: Frontiers in Visual Science. S. J. Cool and E. L. Smith (eds.). Springer-Verlag, New York.Google Scholar
  2. Cleland, B. G., Dubin, M. W., and Levick, W. R. (1971). Sustained and transient neurons in the cat’s retina and lateral geniculate nucleus. J. Physiol. 217:473–496.PubMedGoogle Scholar
  3. Daniels, J. D., Pettigrew, J. D., and Norman, J. L. (1978). Development of single neuron responses in kitten’s lateral geniculate nucleus. J. Neurophysiol. 41:1373–1393.PubMedGoogle Scholar
  4. Enroth-Cugell, C., and Robson, J. G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. 187:517–552.PubMedGoogle Scholar
  5. Eysel, U. Th., Grüsser, O.-J., and Hoffmann, K.-P. (1978). The effect of monocular pattern deprivation on the signal transmission by neurons of the cat lateral geniculate body. Arch. Ital. Biol. 116:427–443.PubMedGoogle Scholar
  6. Ferster, D., and LeVay, S. (1978). The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat. J. Comp. Neurol. 182:923–944.PubMedCrossRefGoogle Scholar
  7. Friedlander, J. J., Lin, C.-S., and Sherman, S. M. (1979). Structure of physiologically identified X-and Y-cells in the cat’s lateral geniculate nucleus. Science (in press).Google Scholar
  8. Garey, L. J., and Blakemore, C. (1977). The effects of monocular deprivation on different neuronal classes in the lateral geniculate nucleus of the cat. Exp. Brain Res. 28:259–278.PubMedCrossRefGoogle Scholar
  9. Gilbert, C. C., and Kelly, J. P. (1975). The projections of cells in different layers of the cat’s visual cortex. J. Comp. Neurol. 163:81–106.PubMedCrossRefGoogle Scholar
  10. Ginsburg, A. P., Carl, J. W., Kabrisky, M., Hall, C. F., and Gill, P. A. (1976). Psychological aspects of a model for the classification of visual images. In: Advances in Cybernetics and Systems, vol. III. J. Rose (ed.). Gordon and Breach Science Publishers, Ltd., London.Google Scholar
  11. Guillery, R. W. (1966). A study of Golgi preparations from the dorsal lateral geniculate nucleus of the adult cat. J. Comp. Neurol. 128:21–50.PubMedCrossRefGoogle Scholar
  12. Guillery, R. W. (1970). The laminar distribution of retinal fibers in the dorsal lateral geniculate nucleus of the cat: a new interpretation. J. Comp. Neurol. 138:339–368.CrossRefGoogle Scholar
  13. Guillery, R. W. (1972). Binocular competition in the control of geniculate cell growth. J. Comp. Neurol. 144:177–230.CrossRefGoogle Scholar
  14. Guillery, R. W. (1973). The effect of lid suture upon the growth of cells in the dorsal lateral geniculate nucleus of kittens. J. Comp. Neurol. 148:417–422.PubMedCrossRefGoogle Scholar
  15. Guillery, R. W., and Stelzner, D. J. (1970). The differential effects of unilateral lid closure upon the monocular and binocular segments of the dorsal lateral geniculate nucleus of the cat. J. Comp. Neurol. 139:413–422.PubMedCrossRefGoogle Scholar
  16. Hess, R. F., and Garner, L. R. (1977). The effects of corneal edema on visual function. Invest. Ophthal. & Vis. Sci. 16:5–13.Google Scholar
  17. Hess, R., and Woo, G. (1978). Vision through cataracts. Invest. Ophthal. & Vis. Sci. 17:428–435.Google Scholar
  18. Hickey, T. L., Spear, P. D., and Kratz, K. E. (1977). Quantitative studies of cell size in the cat’s lateral geniculate nucleus following visual deprivation. J. Comp. Neurol. 172:265–282.PubMedCrossRefGoogle Scholar
  19. Hochstein, S., and Shapley, R. M. (1976a). Quantitative analysis of retinal ganglion cell classifications. J. Physiol. 262:237–264.PubMedGoogle Scholar
  20. Hochstein, S., and Shapley, R. M. (1976b). Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. J. Physiol. 262: 265–284.PubMedGoogle Scholar
  21. Hoffmann, K.-P., and Sireteanu, R. (1977). Interlaminar differences in the effects of early and late monocular deprivation on the visual acuity of cells in the lateral geniculate nucleus of the cat. Neuroscience Letters 5:171–175.PubMedCrossRefGoogle Scholar
  22. Hoffmann, K.-P., and Stone, J. (1971). Conduction velocity of afferents to cat visual cortex: a correlation with cortical receptive field properties. Brain Res. 32:460–466.CrossRefGoogle Scholar
  23. Hoffmann, K.-P., Stone, J., and Sherman, S. M. (1972). Relay of receptive field properties in dorsal lateral geniculate nucleus of the cat. J. Neurophysiol. 35:518–531.PubMedGoogle Scholar
  24. Hubel, D. H., and Wiesel, T. N. (1962). Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. J. Physiol. 160:106–154.PubMedGoogle Scholar
  25. Hubel, D. H., and Wiesel, T. N. (1970). The period of susceptibility of the physiological effects of unilateral eye closure in kittens. J. Physiol. 206:419–436.PubMedGoogle Scholar
  26. Ikeda, H., and Tremain, K. E. (1978). Amblyopia resulting from penalisation: neurophysiological studies of kittens reared with atropinisation of one or both eyes. Brit. J. of Ophthal. 62:21–28.CrossRefGoogle Scholar
  27. Ikeda, H., Tremain, K. E., and Einon, G. (1978). Loss of spatial resolution of lateral geniculate nucleus neurones in kittens raised with convergent squint produced at different stages in development. Exp. Brain Res. 31:207–220.PubMedGoogle Scholar
  28. Ikeda, H., and Wright, M. J. (1972). Receptive field organization of sustained and transient retinal ganglion cells which subserve different functional roles. J. Physiol. 227:769–800.PubMedGoogle Scholar
  29. Ikeda, H., and Wright, M. J. (1975). Spatial and temporal properties of “sustained” and “transient” neurones in area 17 of the cat’s visual cortex. Exp. Brain Res. 22:363–383.Google Scholar
  30. Ikeda, H., and Wright, M. J. (1976). Properties of LGN cells in kittens reared with convergent squint: a neurophysiological demonstration of amblyopia. Exp. Brain Res. 25:63–77.PubMedCrossRefGoogle Scholar
  31. Kabrisky, M., Tallman, O., Day, C. M., and Radoy, C. M. (1970). A theory of pattern perception based on laminar physiology. In: Contemporary Problems in Perception. A. T. Welford and L. Houssiadas (eds.). Taylor & Francis, Ltd., London.Google Scholar
  32. Kalil, Ronald (1978). Dark rearing in the cat: effects on visuomotor behavior and cell growth in the dorsal lateral geniculate nucleus. J. Comp. Neurol. 178:451–468.PubMedCrossRefGoogle Scholar
  33. Kalil, Ronald, and Worden, Ian (1978). Cytoplasmic laminated bodies in the lateral geniculate nucleus of normal and dark-reared cats. J. Comp. Neurol. 178:469–486.PubMedCrossRefGoogle Scholar
  34. Kratz, K. E., Mangel, S. C., Lehmkuhle, S., and Sherman, S. M. (1979). Retinal X-and Y-cells in monocularly lid-sutured cats: normality of spatial and temporal properties. Submitted for publication.Google Scholar
  35. Kratz, K. E., Sherman, S. M., and Kalil, R. (1979). Lateral geniculate nucleus in dark-reared cats: loss of Y-cells without changes in cell size. Science 203:1353–1355.PubMedCrossRefGoogle Scholar
  36. Kratz, K. E., Webb, S. V., and Sherman, S. M. (1978a). Studies of the cat’s medial interlaminar nucleus: a subdivision of the dorsal lateral geniculate nucleus. J. Comp. Neurol. 181: 601–614.PubMedCrossRefGoogle Scholar
  37. Kratz, K. E., Webb, S. V., and Sherman, S. M. (1978b). Effects of early monocular lid suture upon neurons in the cat’s medial interlaminar nucleus. J. Comp. Neurol. 181:615–625.PubMedCrossRefGoogle Scholar
  38. Lehmkuhle, Stephen W., Kratz, Kenneth E., Mangel, Stuart C., and Sherman, S. Murray (1978). An effect of early monocular lid suture upon the development of X-cells in the cat’s lateral geniculate nucleus. Brain Res. 157:346–350.PubMedCrossRefGoogle Scholar
  39. Lehmkuhle, S., Kratz, K. E., Mangel, S. C., and Sherman, S. M. (1979a). Spatial and temporal sensitivity of X-and Y-cells in the dorsal lateral geniculate nucleus of the cat. Submitted for publication.Google Scholar
  40. Lehmkuhle, S., Kratz, K. E., Mangel, S. C., and Sherman, S. M. (1979b). The effects of early monocular lid suture on spatial and temporal sensitivity of neurons in the dorsal lateral geniculate nucleus of the cat. Submitted for publication.Google Scholar
  41. LeVay, S., and Ferster, D. (1977). Relay cell classes in the lateral geniculate nucleus of the cat and the effects of visual deprivation. J. Comp. Neurol. 172:563–584.PubMedCrossRefGoogle Scholar
  42. Lin, C.-S., and Sherman, S. M. (1978). Effects of early monocular eyelid suture upon development of relay cell classes in the cat’s lateral geniculate nucleus. J. Comp. Neurol. 181:809–831.PubMedCrossRefGoogle Scholar
  43. Maffei, L., and Fiorentini, A. (1976). Monocular deprivation in kittens impairs the spatial resolution of geniculate neurones. Nature 264:754–755.PubMedCrossRefGoogle Scholar
  44. Norton, Thomas T., Casagrande, Vivien A., and Sherman, S. Murray (1977). Loss of Y-cells in the lateral geniculate nucleus of monocularly deprived tree shrews. Science 197:784–786.PubMedCrossRefGoogle Scholar
  45. Rodieck, R. W. (1979). Visual pathways. Ann. Rev. Neurosci. 2:193–225.PubMedCrossRefGoogle Scholar
  46. Rowe, M. H., and Stone, J. (1977). Naming of neurons. Classification and naming of cat retinal ganglion cells. Brain, Behav., & Evol. 14:185–216.CrossRefGoogle Scholar
  47. Sanderson, K. J. (1971). The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat. J. Comp. Neurol. 143:101–118.PubMedCrossRefGoogle Scholar
  48. Shapley, R., and Hochstein, S. (1975). Visual spatial summation in two classes of geniculate cells. Nature 156:411–413.CrossRefGoogle Scholar
  49. Sherman, S. M. (1973). Visual field defects in monocularly and binocularly deprived cats. Brain Res. 49:25–45.CrossRefGoogle Scholar
  50. Sherman, S. M., Guillery, R. W., Kaas, J. H., and Sanderson, K. J. (1974). Behavioral, electrophysiological, and morphological studies of binocular competition in the development of the geniculo-cortical pathways of cats. J. Comp. Neurol. 158:1–18.PubMedCrossRefGoogle Scholar
  51. Sherman, S. M., Hoffmann, K.-P., and Stone, J. (1972). Loss of a specific cell type from dorsal lateral geniculate nucleus in visually deprived cats. J. Neurophysiol. 35:532–541.PubMedGoogle Scholar
  52. Sherman, S. M., and Stone, J. (1973). Physiological normality of the retina in visually deprived cats. Brain Res. 60:224–230.PubMedCrossRefGoogle Scholar
  53. Sherman, S. M., Wilson, J. R., and Guillery, R. W. (1975). Evidence that binocular competition affects the postnatal development of Y-cells in the cat’s lateral geniculate nucleus. Brain Res. 100:441–444.PubMedCrossRefGoogle Scholar
  54. Stone, J. (1972). Morphology and physiology of the geniculocortical synapse in the cat. The question of parallel input to the striate cortex. Invest. Ophthal. 11:338–344.PubMedGoogle Scholar
  55. Stone, J., and Dreher, B. (1973). Projection of X-and Y-cells of cat’s lateral geniculate nucleus to areas 17 and 18 of visual cortex. J. Neurophysiol. 36:551–567.PubMedGoogle Scholar
  56. Tusa, R., Rosenquist, A. C., and Palmer, L. A. (1979). Retinotopic organization of areas 18 and 19 in the cat. J. Comp. Neurol. (in press).Google Scholar
  57. Wiesel, T. N., and Hubel, D. H. (1963a). Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body. J. Neurophysiol. 26:978–993.PubMedGoogle Scholar
  58. Wiesel, T. N., and Hubel, D. H. (1963b). Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26:1003–1017.PubMedGoogle Scholar
  59. Wiesel, T. N., and Hubel, D. H. (1965). Comparison of the effects of unilateral and bilateral eye closure on cortical responses in kittens. J. Neurophysiol. 28:1029–1040.PubMedGoogle Scholar
  60. Wilson, J. R., and Sherman, S. M. (1977). Differential effects of early monocular deprivation on binocular and monocular segments of cat striate cortex. J. Neurophysiol. 40:891–903.PubMedGoogle Scholar
  61. Wilson, P. D., Rowe, M. H., and Stone, J. (1976). Properties of relay cells in cat’s lateral geniculate nucleus: a comparison of W-cells with X-and Y-cells. J. Neurophysiol. 39:1193–1209.PubMedGoogle Scholar
  62. Wilson, P. D., and Stone, J. (1975). Evidence of W-cell input to the cat’s visual cortex via the C laminae of the lateral geniculate nucleus. Brain Res. 92:472–478.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • S. Murray Sherman
    • 1
  1. 1.Department of PhysiologyUniversity of Virginia School of MedicineCharlottesvilleUSA

Personalised recommendations