Skip to main content

Characterization of Neural Enzyme Development in Dissociated Chick Embryo Brain Cell Cultures

  • Chapter
Developmental Neurobiology of Vision

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 27))

Abstract

The present study characterizes the in vitro development of certain neural marker enzymes in dissociated cell cultures of embryonic chick brain. In cultures of cerebral hemispheres (CH) from 6- and 10-day-old embryos, acetylcholinesterase (AChE) activity declined with age in culture, a phenomenon which may be related to increasing growth of non-neuronal cells in culture. Choline acetyltransferase (CAT) activity in cultures from 10-day-old embryos, except for a decline between 7 to 11 days, increased with age in culture. The development of CAT activity suggests non-neuronal influences on the expression of CAT activity. Tyrosine hydroxylase (TH) activity increases at later periods in culture than does CAT and may reflect enhanced differentiation of adrenergic neurons by cholinergic influences, or by glial or other non-neuronal cells. The differential maturational patterns of CAT and TH in vitro are also observed in vivo, suggesting that the biochemical development of dissociated brain cell cultures exhibits similarities to the biochemical development of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Black, I. B., I. A. Hendry, and L. L. Iversen (1971). Transynaptic regulation of growth and development of adrenergic neurons in a mouse sympathetic ganglion. Brain Res. 34:229–240.

    Article  PubMed  CAS  Google Scholar 

  • Blume, A., F. Gilbert, S. Wilson, J. Farberg, R. Rosenberg, and M. Nirenberg (1970). Regulation of acetylcholinesterase in neuroblastoma cells. Proc. Soc. Nat. Acad. Sci. 67:786–792.

    Article  CAS  Google Scholar 

  • Burdick, C. J., and C. F. Strittmatter (1965). Appearance of biochemical components related to acetylcholine metabolism during the embryonic development of chick brain. Arch. Biochem. Biophys. 109:293–301.

    Article  CAS  Google Scholar 

  • Chiappinelli, V., E. Giacobini, G. Pilar, and H. Uchimura (1976). Induction of cholinergic enzymes in chick ciliary ganglion and iris muscle cells during synapse formation. J. Physiol. 257: 749–766.

    PubMed  CAS  Google Scholar 

  • Crain, S. M. (1976). Neurophysiologic Studies in Tissue Culture. Raven Press, New York.

    Google Scholar 

  • Ebel, A., R. Massarelli, M. Sensenbrenner, and P. Mandel (1974). Choline acetyltransferase and acetylcholinesterase activities in chicken brain hemispheres in vivo and in cell cultures. Brain Res. 76:461–472.

    Article  PubMed  CAS  Google Scholar 

  • Ellman, G. L., K. D. Courtney, V. Andres, and R. M. Featherstone (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7:88–95.

    Article  PubMed  CAS  Google Scholar 

  • Fonnum, F. (1975). A rapid radiochemical method for the determination of choline acetyltransferase. J. Neurochem. 24: 407–409.

    Article  PubMed  CAS  Google Scholar 

  • Giacobini, G., and G. Filogamo (1973). Changes in the enzymes for the metabolism of acetylcholine during development of the central nervous system. In Central Nervous System: Studies on Metabolic Regulation and Function, E. Genazzani and H. Herken (eds.), Springer-Verlag, Berlin, pp. 153–157.

    Google Scholar 

  • Lowry, O. H., N. F. Rosebrough, A. L. Farr, and R. J. Randall (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  CAS  Google Scholar 

  • Monard, D., F. Solomon, M. Rentsch, and R. Gysin (1973). Glia-induced morphological differentiation in neuroblastoma cells. Proc. Nat. Acad. Sci. USA 70:1894–1897.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, R. A., J. Oger, J. D. Saide, M. H. Blanchard, G. W. Aranson, C. Hogan, N. J. Pantazis, and M. Young (1977). Secretion of nerve growth factor by central nervous glioma cells in culture. J. Cell Biol. 72:769–773.

    Article  PubMed  CAS  Google Scholar 

  • Murray, M. R. (1965). Nervous tissues in vitro In: Cells and Tissues in Culture: Methods, Biology, and Physiology, E. N. Willmer (ed.), Academic Press, New York, pp. 371–435.

    Google Scholar 

  • Sensenbrenner, M., J. Booher, and P. Mandel (1971). Cultivation and growth of dissociated neurons from chick embryo cerebral cortex in the presence of different substrates. Z. Zellforsch. 117:559–569.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, D. L., and B. K. Schrier (1973). Cell cultures of fetal rat brain: growth and marker enzyme development. Exp. Cell Res. 77:239–247.

    Article  PubMed  CAS  Google Scholar 

  • Vernadakis, A., and B. Culver (1979). Neural tissue culture: a biochemical tool. In: The Biochemistry of Brain, S. Kumar (ed.), Pergamon Press, Ltd. (in press).

    Google Scholar 

  • Vernadakis, A., and D. A. Gibson (1974). Role of neurotransmitter substances in neural growth. In: Perinatal Pharmacology: Problems and Priorities, J. Dancis and J. C. Hwang (eds.), Raven Press, New York, pp. 65–77.

    Google Scholar 

  • Vernadakis, A., R. Nidess, M. L. Timiras, and R. Schlesinger (1976). Responsiveness of acetylcholinesterase and butyrylcholinesterase activities in neural cells to age and cell density in culture. Exp. Cell Res. 97:453–457.

    Article  PubMed  CAS  Google Scholar 

  • Waymire, J. C., R. Bjur, and N. Weiner (1971). Assay of tyrosine hydroxylase by coupled decarboxylation of DOPA formed from 1—14C—L—tyrosine. Anal. Biochem. 43:588–600.

    Article  PubMed  CAS  Google Scholar 

  • Waymire, J. C., A. Vernadakis, and N. Weiner (1974). Studies on the development of tyrosine hydroxylase, monoamine oxidase, and aromatic-L-amino acid decarboxylase in several regions of the chick brain. In: Drugs and the Developing Brain, A. Vernadakis and N. Weiner (eds.), Plenum Press, New York, pp. 149–170.

    Google Scholar 

  • Werner, I., G. R. Peterson, and L. Shuster (1971). Choline acetyltransferase and acetylcholinesterase in cultured brain cells from chick embryos. J. Neurochem. 18:141–151.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, S. H., B. K. Schrier, J. L. Farber, E. J. Thompson, R. N. Rosenberg, A. J. Blume, and M. W. Nirenberg (1972). Markers for gene expression in cultured cells from the nervous system. J. Biol. Chem. 247:3159–3169.

    PubMed  CAS  Google Scholar 

  • Young, M., J. Oger, M. H. Blanchard, H. A. Asdourian, and B. G. W. Aranson (1975). Secretion of a nerve growth factor by primary chick fibroblast cultures. Science 187:361–362.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Vernadakis, A., Arnold, E.B. (1979). Characterization of Neural Enzyme Development in Dissociated Chick Embryo Brain Cell Cultures. In: Freeman, R.D. (eds) Developmental Neurobiology of Vision. NATO Advanced Study Institutes Series, vol 27. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3605-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3605-1_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3607-5

  • Online ISBN: 978-1-4684-3605-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics