Growth and Neurogenesis in Adult Goldfish Retina

  • Pamela Raymond Johns
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 27)


Growth continues in adult goldfish. Cell counts and3 H—thymidine radioautography indicate that the brain and retina increase in size in part by the addition of new neurons. The retina of a large, 4-year-old fish (20 cm in length) has about 20,000,000 neurons, whereas in a small (5 cm) fish there are only about 3,000,000 retinal neurons. New cells are produced at the margins of the retina and are added appositionally at rates of up to 20,000 cells/day. Growth-related changes also occur in the older, more central regions of the retina: the eyeball expands, stretching the retina and decreasing the density of its cells. The rods alone maintain a constant density with growth, so that the proportion of rods relative to other retinal neurons increases as the fish grows. Since new rods are added only at the periphery, a shift in the position of rods with respect to their postsynaptic partners is implied. This suggests that synaptic connections may be continually broken and reformed in the functioning adult goldfish retina.


Ganglion Cell Retinal Cell Crucian Carp Inner Nuclear Layer Germinal Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali, M. A. (1964). Stretching of the retina during growth of salmon (Salmo salar). Growth 28:83–89.PubMedGoogle Scholar
  2. Altman, J. (1966). Autoradiographic and histological studies of postnatal neurogenesis. II. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in infant rats, with special reference to postnatal neurogenesis in some brain regions. J. comp. Neurol. 128:431–474.CrossRefGoogle Scholar
  3. Altman, J. (1969). Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain with special reference to persisting neurogenesis in the olfactory bulb. J. comp. Neurol. 137:433–458.PubMedCrossRefGoogle Scholar
  4. Altman, J. (1970). Postnatal neurogenesis and the problem of neural plasticity. In: Developmental Neurobiology. W. A. Himwich (ed.). Thomas, Springfield, Illinois, pp. 197–237.Google Scholar
  5. Altman, J. (1972). Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer. J. comp. Neurol. 145:353–398.PubMedCrossRefGoogle Scholar
  6. Bernard, H. M. (1900). Studies in the retina: rods and cones in the frog and in some other amphibia. Quart. J. Micros. Sci. 43:23–47.Google Scholar
  7. Blaxter, J. H. S. (1975). The eyes of larval fish. In: Vision in Fishes: New Approaches in Research. M. A. Ali (ed.). Plenum Press, New York, pp. 427–444.Google Scholar
  8. Blaxter, J. H. S., and M. P. Jones (1967). The development of the retina and retinomotor response in the herring. J. Mar. Biol. Assoc. UK 47:677–697.CrossRefGoogle Scholar
  9. Brown, M. E. (1957). The Physiology of Fishes, Vol. I. Metabolism, Ch. IX. Experimental studies on growth. Academic Press, New York, pp. 361–400.Google Scholar
  10. Coulombre, A. J. (1955). Correlations of structural and biochemical changes in the developing retina of the chick. Amer. J. Anat. 96:153–189.PubMedCrossRefGoogle Scholar
  11. Coulombre, A. J., S. N. Steinberg, and J. L. Coulombre (1963). The role of intraocular pressure in the development of the chick eye. V. Pigmented epithelium. Invest. Ophthal. 2:83–89.PubMedGoogle Scholar
  12. Fisher, L. J., and S. S. Easter (1979). Retinal synaptic arrays: continuing development in the adult goldfish. J. comp. Neurol. (in press).Google Scholar
  13. Gaze, R. M., and W. E. Watson (1968). Cell division and migration in the brain after optic nerve lesions. In: Ciba Foundation Symposium on Growth of the Nervous System. G. E. W. Wolstenholme and M. O’Connor (eds.). Churchill Ltds., London, pp. 53–67.Google Scholar
  14. Hollyfield, J. G. (1968). Differential addition of cells to the retina in Rana pipiens tadpoles. Devel. Biol. 18:163–179.CrossRefGoogle Scholar
  15. Hollyfield, J. G. (1971). Differential growth of the neural retina in Xeonopus laevis larvae. Devel. Biol. 24:264–286.CrossRefGoogle Scholar
  16. Hollyfield, J. G. (1972). Histogenesis of the retina in the killifish Fundulus heteroclitus. J. comp. Neurol. 144:373–380.PubMedCrossRefGoogle Scholar
  17. Jacobson, M. (1970). Developmental Neurobiology. Holt, Rinehart & Winston, New York.Google Scholar
  18. Jacobson, M. (1976). Histogenesis of retina in the clawed frog with implications for the pattern of development of retinotectal connections. Brain Res. 103:541–545.PubMedCrossRefGoogle Scholar
  19. Johns, P. A. R. (1976). Growth of the adult goldfish retina. Ph.D. thesis, The University of Michigan.Google Scholar
  20. Johns, P. R. (1977). Growth of the adult goldfish eye. III. Source of the new retinal cells. J. comp. Neurol. 176:343–358.PubMedCrossRefGoogle Scholar
  21. Johns, P. R., and S. S. Easter (1975). Retinal growth in adult goldfish. In: Vision in Fishes: New Approaches in Research. M. A. Ali (ed.). Plenum Press, New York, pp. 451–457.Google Scholar
  22. Johns, P. R., and S. S. Easter (1977). Growth of the adult goldfish eye. II. Increase in retinal cell number. J. comp. Neurol. 176:331–342.PubMedCrossRefGoogle Scholar
  23. Johns, P. R., A. C. Rusoff, and M. W. Dubin (1979). Postnatal neurogenesis in the kitten retina. J. Comp. Neurol. (in press)}.Google Scholar
  24. Kirsche, W. (1960). Zur Frage der Regeneration des Mittelhirnes der Teleostei. Verh. Anat. Ges. 56:259–270.Google Scholar
  25. Kirsche, W. (1965). Regenerative Vorgange im Gehirn und Ruchenmark. Ergeb. Anat. Entwick. 38:143–194.Google Scholar
  26. Kirsche, W. (1967). Uber postembryonale Matrixzonen im Gehirn verschiedener Vertebraten und deren Bezichung zur Hirnbauplanlehre. Z. Mikros. Anat. Forsch. 77:313–406.Google Scholar
  27. Kirsche, W., and K. Kirsche (1961). Experimentelle Untersuchungen zur Frage der Regeneration und Funktion des Tectum opticum von Carassius carassius. L. Z. Mikros, Anat. Forsch. 67:140–182.Google Scholar
  28. Kock, J.-H., and T. Reuter (1978). Retinal ganglion cells in the crucian carp (Carassius carassius). I. Size and number of somata in eyes of different sizes. J. comp. Neurol. 179:535–548.PubMedCrossRefGoogle Scholar
  29. Konigsmark, B. W. (1970). Methods for the counting of neurons. In: Contemporary Research Methods in Neuroanatomy. W. J. H. Nauta and S. O. E. Ebbesson (eds.). Springer-Verlag, New York, pp. 315–340.CrossRefGoogle Scholar
  30. Lyall, A. H. (1957). The growth of the trout retina. Quart. J. Micros. Sci. 98:101–110.Google Scholar
  31. Mann, I. (1969). The Development of the Human Eye. Grune and Stratton, New York.Google Scholar
  32. Meyer, R. L. (1977). Eye-in-water electrophysiological mapping of goldfish with and without tectal lesions. Exp. Neurol. 56:23–41.PubMedCrossRefGoogle Scholar
  33. Meyer, R. L. (1978). Evidence from thymidine labeling for continuing growth of retina and tectum in juvenile goldfish. Exp. Neurol. 59:99–111.PubMedCrossRefGoogle Scholar
  34. Muller, H. (1952). Bau und Wachstum der Netzhaut des Guppy (Lebistes reticulatus). Zool. Jb. 63:275–324.Google Scholar
  35. Packard, A. (1972). Cephalopods and fish: The limits of convergence. Biol. Rev. 47:241–307.CrossRefGoogle Scholar
  36. Pfuderer, P., P. Williams, and A. A. Francis (1974). Partial purification of the crowding factor from Carassius auratus and Cyprinus carpio. J. Exp. Zool. 187:375–382.PubMedCrossRefGoogle Scholar
  37. Prestige, M. C. (1974). Axon and cell numbers in the developing nervous system. Brit. Med. Bull. 30:107–111.PubMedGoogle Scholar
  38. Rahmann, H. (1968). Autoradiographische Untersuchungen zum DNS-Stoffwechsel (Mitose-Haufigkeit) im ZNS von Brachydanio rerio HAM. BUCH.Google Scholar
  39. Richter, W. (1965). Regeneration im Tectum opticum bei Leucaspius delineatus (Heckel 1843). Z. Mikros. Anat. Forsch. 74:46–68.Google Scholar
  40. Richter, W. (1968). Regeneration im Tectum opticum bei adulten Lebistes reticulatus (Peters 1859). J. Hirnforsch. 10:173–186.PubMedGoogle Scholar
  41. Richter, W., and D. Kranz (1970). Die Abhangigkeit der DNS-Syntese in den Matrixzonen des Mesencephalons vom Lebensolter der Versuchstiere (Lebistes reticulatus—Teleoste). Autoradiographische Untersuchungen. Z. Mikros. Anat. Forsch. 82:76–91.Google Scholar
  42. Richter, W., and D. Kranz (1977). Uber die Bedeutung der Zeilproliferation für die Hirnregeneration bei niederen Vertebraten. Autoradiographische Untersuchungen. Verh. Anat. Ges. 71:439–445.PubMedGoogle Scholar
  43. Rodieck, R. W. (1973). The Vertebrate Retina: Principles of Structure and Function. W. H. Freeman & Co., San Francisco.Google Scholar
  44. Rusoff, A. C. (1979). Development of retinal ganglion cells in kittens (this volume).Google Scholar
  45. Schaeffer, S. F., and E. Raviola (1975). Ultrastructural analysis of functional changes in the synaptic endings of turtle cone cells. In: Cold Spring Harbor Symp. on Quant. Biol., Vol. XL. The Synapse. Cold Spring Harbor Laboratory, New York, pp. 521–528.Google Scholar
  46. Scholes, J. H. (1976). Neuronal connections and cellular arrangement in the fish retina. In: Neural Principles in Vision. F. Zettler and R. Weiler (eds.). Springer-Verlag, New York, pp. 63–93.CrossRefGoogle Scholar
  47. Scott, T. M., and G. Lazar (1976). An investigation into the hypothesis of shifting neuronal relationships during development. J. Anat. 121:485–496.PubMedGoogle Scholar
  48. Segaar, J. (1965). Behavioral aspects of degeneration and regeneration in fish brain: A comparison with higher vertebrates. In: Progress in Brain Research, Vol. 14. Degeneration Patterns in the Nervous System. M. Singer and J. P. S. Schade (eds.). Elsevier/North-Holland, New York, pp. 143–231.CrossRefGoogle Scholar
  49. Sharma, S. C., and F. Ungar (1977). The histogenesis of the goldfish retina. Neurosci. Abst. 3:94.Google Scholar
  50. Sidman, R. L. (1970). Autoradiographic methods and principles for study of the nervous system with thymidine—H3. In: Contemporary Research Methods in Neuroanatomy. W. J. H. Nauta and S. O. E. Ebbesson (eds.). Springer-Verlag, New York, pp. 252–274.CrossRefGoogle Scholar
  51. Stell, W. K. (1967). The structure and relationships of horizontal cells and photoreceptor-bipolar synaptic complexes in goldfish retina. Amer. J. Anat. 121:401–424.PubMedCrossRefGoogle Scholar
  52. Stell, W. K. (1972). The morphological organization of the vertebrate retina. In: Handbook of Sensory Physiology, Vol. VII/2. Physiology of Photoreceptor Organs. M. G. F. Fuortes (ed.). Springer-Verlag, New York, pp. 111–213.Google Scholar
  53. Stell, W. K., and D. O. Lightfoot (1975). Color-specific interconnections of cones and horizontal cells in the retina of the goldfish. J. comp. Neurol. 159:473–502.PubMedCrossRefGoogle Scholar
  54. Straznicky, K., and R. M. Gaze (1971). The growth of the retina in Xenopus laevis: an autoradiographic study. J. Embryol. Exp. Morph. 26:67–79.PubMedGoogle Scholar
  55. Straznicky, K., and R. M. Gaze (1972). The development of the tectum in Xenopus laevis: an autoradiographic study. J. Embryol. Exp. Morph. 26:87–115.Google Scholar
  56. Wagner, H.-J. (1975). Quantitative changes of synaptic ribbons in the cone pedicles of Nannacara: Light dependent or governed by a circadian rhythm? In: Vision in Fishes: New Approaches in Research. M. A. Ali (ed.). Plenum Press, New York, pp. 679–686.Google Scholar
  57. Watson, W. E. (1974). Physiology of neuroglia. Physiol. Rev. 54:245–271.PubMedGoogle Scholar
  58. Weiss, P. (1949). Differential growth. In: The Chemistry and Physiology of Growth. A. K. Parpart (ed.). Princeton University Press, New Jersey, pp. 135–186.Google Scholar
  59. Wilson, M. A. (1971). Optic nerve fibre counts and retinal ganglion cell counts during development of Xenopus laevis (Daudin). Quart. J. Exp. Physiol. 56:83–91.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Pamela Raymond Johns
    • 1
  1. 1.Department of AnatomyThe University of MichiganAnn ArborUSA

Personalised recommendations