Skip to main content

Growth and Neurogenesis in Adult Goldfish Retina

  • Chapter
Book cover Developmental Neurobiology of Vision

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 27))

Abstract

Growth continues in adult goldfish. Cell counts and3 H—thymidine radioautography indicate that the brain and retina increase in size in part by the addition of new neurons. The retina of a large, 4-year-old fish (20 cm in length) has about 20,000,000 neurons, whereas in a small (5 cm) fish there are only about 3,000,000 retinal neurons. New cells are produced at the margins of the retina and are added appositionally at rates of up to 20,000 cells/day. Growth-related changes also occur in the older, more central regions of the retina: the eyeball expands, stretching the retina and decreasing the density of its cells. The rods alone maintain a constant density with growth, so that the proportion of rods relative to other retinal neurons increases as the fish grows. Since new rods are added only at the periphery, a shift in the position of rods with respect to their postsynaptic partners is implied. This suggests that synaptic connections may be continually broken and reformed in the functioning adult goldfish retina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali, M. A. (1964). Stretching of the retina during growth of salmon (Salmo salar). Growth 28:83–89.

    PubMed  CAS  Google Scholar 

  • Altman, J. (1966). Autoradiographic and histological studies of postnatal neurogenesis. II. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in infant rats, with special reference to postnatal neurogenesis in some brain regions. J. comp. Neurol. 128:431–474.

    Article  Google Scholar 

  • Altman, J. (1969). Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain with special reference to persisting neurogenesis in the olfactory bulb. J. comp. Neurol. 137:433–458.

    Article  PubMed  CAS  Google Scholar 

  • Altman, J. (1970). Postnatal neurogenesis and the problem of neural plasticity. In: Developmental Neurobiology. W. A. Himwich (ed.). Thomas, Springfield, Illinois, pp. 197–237.

    Google Scholar 

  • Altman, J. (1972). Postnatal development of the cerebellar cortex in the rat. I. The external germinal layer and the transitional molecular layer. J. comp. Neurol. 145:353–398.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, H. M. (1900). Studies in the retina: rods and cones in the frog and in some other amphibia. Quart. J. Micros. Sci. 43:23–47.

    Google Scholar 

  • Blaxter, J. H. S. (1975). The eyes of larval fish. In: Vision in Fishes: New Approaches in Research. M. A. Ali (ed.). Plenum Press, New York, pp. 427–444.

    Google Scholar 

  • Blaxter, J. H. S., and M. P. Jones (1967). The development of the retina and retinomotor response in the herring. J. Mar. Biol. Assoc. UK 47:677–697.

    Article  Google Scholar 

  • Brown, M. E. (1957). The Physiology of Fishes, Vol. I. Metabolism, Ch. IX. Experimental studies on growth. Academic Press, New York, pp. 361–400.

    Google Scholar 

  • Coulombre, A. J. (1955). Correlations of structural and biochemical changes in the developing retina of the chick. Amer. J. Anat. 96:153–189.

    Article  PubMed  CAS  Google Scholar 

  • Coulombre, A. J., S. N. Steinberg, and J. L. Coulombre (1963). The role of intraocular pressure in the development of the chick eye. V. Pigmented epithelium. Invest. Ophthal. 2:83–89.

    PubMed  CAS  Google Scholar 

  • Fisher, L. J., and S. S. Easter (1979). Retinal synaptic arrays: continuing development in the adult goldfish. J. comp. Neurol. (in press).

    Google Scholar 

  • Gaze, R. M., and W. E. Watson (1968). Cell division and migration in the brain after optic nerve lesions. In: Ciba Foundation Symposium on Growth of the Nervous System. G. E. W. Wolstenholme and M. O’Connor (eds.). Churchill Ltds., London, pp. 53–67.

    Google Scholar 

  • Hollyfield, J. G. (1968). Differential addition of cells to the retina in Rana pipiens tadpoles. Devel. Biol. 18:163–179.

    Article  CAS  Google Scholar 

  • Hollyfield, J. G. (1971). Differential growth of the neural retina in Xeonopus laevis larvae. Devel. Biol. 24:264–286.

    Article  CAS  Google Scholar 

  • Hollyfield, J. G. (1972). Histogenesis of the retina in the killifish Fundulus heteroclitus. J. comp. Neurol. 144:373–380.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, M. (1970). Developmental Neurobiology. Holt, Rinehart & Winston, New York.

    Google Scholar 

  • Jacobson, M. (1976). Histogenesis of retina in the clawed frog with implications for the pattern of development of retinotectal connections. Brain Res. 103:541–545.

    Article  PubMed  CAS  Google Scholar 

  • Johns, P. A. R. (1976). Growth of the adult goldfish retina. Ph.D. thesis, The University of Michigan.

    Google Scholar 

  • Johns, P. R. (1977). Growth of the adult goldfish eye. III. Source of the new retinal cells. J. comp. Neurol. 176:343–358.

    Article  PubMed  CAS  Google Scholar 

  • Johns, P. R., and S. S. Easter (1975). Retinal growth in adult goldfish. In: Vision in Fishes: New Approaches in Research. M. A. Ali (ed.). Plenum Press, New York, pp. 451–457.

    Google Scholar 

  • Johns, P. R., and S. S. Easter (1977). Growth of the adult goldfish eye. II. Increase in retinal cell number. J. comp. Neurol. 176:331–342.

    Article  PubMed  CAS  Google Scholar 

  • Johns, P. R., A. C. Rusoff, and M. W. Dubin (1979). Postnatal neurogenesis in the kitten retina. J. Comp. Neurol. (in press)}.

    Google Scholar 

  • Kirsche, W. (1960). Zur Frage der Regeneration des Mittelhirnes der Teleostei. Verh. Anat. Ges. 56:259–270.

    Google Scholar 

  • Kirsche, W. (1965). Regenerative Vorgange im Gehirn und Ruchenmark. Ergeb. Anat. Entwick. 38:143–194.

    CAS  Google Scholar 

  • Kirsche, W. (1967). Uber postembryonale Matrixzonen im Gehirn verschiedener Vertebraten und deren Bezichung zur Hirnbauplanlehre. Z. Mikros. Anat. Forsch. 77:313–406.

    CAS  Google Scholar 

  • Kirsche, W., and K. Kirsche (1961). Experimentelle Untersuchungen zur Frage der Regeneration und Funktion des Tectum opticum von Carassius carassius. L. Z. Mikros, Anat. Forsch. 67:140–182.

    CAS  Google Scholar 

  • Kock, J.-H., and T. Reuter (1978). Retinal ganglion cells in the crucian carp (Carassius carassius). I. Size and number of somata in eyes of different sizes. J. comp. Neurol. 179:535–548.

    Article  PubMed  CAS  Google Scholar 

  • Konigsmark, B. W. (1970). Methods for the counting of neurons. In: Contemporary Research Methods in Neuroanatomy. W. J. H. Nauta and S. O. E. Ebbesson (eds.). Springer-Verlag, New York, pp. 315–340.

    Chapter  Google Scholar 

  • Lyall, A. H. (1957). The growth of the trout retina. Quart. J. Micros. Sci. 98:101–110.

    Google Scholar 

  • Mann, I. (1969). The Development of the Human Eye. Grune and Stratton, New York.

    Google Scholar 

  • Meyer, R. L. (1977). Eye-in-water electrophysiological mapping of goldfish with and without tectal lesions. Exp. Neurol. 56:23–41.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, R. L. (1978). Evidence from thymidine labeling for continuing growth of retina and tectum in juvenile goldfish. Exp. Neurol. 59:99–111.

    Article  PubMed  CAS  Google Scholar 

  • Muller, H. (1952). Bau und Wachstum der Netzhaut des Guppy (Lebistes reticulatus). Zool. Jb. 63:275–324.

    Google Scholar 

  • Packard, A. (1972). Cephalopods and fish: The limits of convergence. Biol. Rev. 47:241–307.

    Article  CAS  Google Scholar 

  • Pfuderer, P., P. Williams, and A. A. Francis (1974). Partial purification of the crowding factor from Carassius auratus and Cyprinus carpio. J. Exp. Zool. 187:375–382.

    Article  PubMed  CAS  Google Scholar 

  • Prestige, M. C. (1974). Axon and cell numbers in the developing nervous system. Brit. Med. Bull. 30:107–111.

    PubMed  CAS  Google Scholar 

  • Rahmann, H. (1968). Autoradiographische Untersuchungen zum DNS-Stoffwechsel (Mitose-Haufigkeit) im ZNS von Brachydanio rerio HAM. BUCH.

    Google Scholar 

  • Richter, W. (1965). Regeneration im Tectum opticum bei Leucaspius delineatus (Heckel 1843). Z. Mikros. Anat. Forsch. 74:46–68.

    CAS  Google Scholar 

  • Richter, W. (1968). Regeneration im Tectum opticum bei adulten Lebistes reticulatus (Peters 1859). J. Hirnforsch. 10:173–186.

    PubMed  CAS  Google Scholar 

  • Richter, W., and D. Kranz (1970). Die Abhangigkeit der DNS-Syntese in den Matrixzonen des Mesencephalons vom Lebensolter der Versuchstiere (Lebistes reticulatus—Teleoste). Autoradiographische Untersuchungen. Z. Mikros. Anat. Forsch. 82:76–91.

    CAS  Google Scholar 

  • Richter, W., and D. Kranz (1977). Uber die Bedeutung der Zeilproliferation für die Hirnregeneration bei niederen Vertebraten. Autoradiographische Untersuchungen. Verh. Anat. Ges. 71:439–445.

    PubMed  Google Scholar 

  • Rodieck, R. W. (1973). The Vertebrate Retina: Principles of Structure and Function. W. H. Freeman & Co., San Francisco.

    Google Scholar 

  • Rusoff, A. C. (1979). Development of retinal ganglion cells in kittens (this volume).

    Google Scholar 

  • Schaeffer, S. F., and E. Raviola (1975). Ultrastructural analysis of functional changes in the synaptic endings of turtle cone cells. In: Cold Spring Harbor Symp. on Quant. Biol., Vol. XL. The Synapse. Cold Spring Harbor Laboratory, New York, pp. 521–528.

    Google Scholar 

  • Scholes, J. H. (1976). Neuronal connections and cellular arrangement in the fish retina. In: Neural Principles in Vision. F. Zettler and R. Weiler (eds.). Springer-Verlag, New York, pp. 63–93.

    Chapter  Google Scholar 

  • Scott, T. M., and G. Lazar (1976). An investigation into the hypothesis of shifting neuronal relationships during development. J. Anat. 121:485–496.

    PubMed  CAS  Google Scholar 

  • Segaar, J. (1965). Behavioral aspects of degeneration and regeneration in fish brain: A comparison with higher vertebrates. In: Progress in Brain Research, Vol. 14. Degeneration Patterns in the Nervous System. M. Singer and J. P. S. Schade (eds.). Elsevier/North-Holland, New York, pp. 143–231.

    Chapter  Google Scholar 

  • Sharma, S. C., and F. Ungar (1977). The histogenesis of the goldfish retina. Neurosci. Abst. 3:94.

    Google Scholar 

  • Sidman, R. L. (1970). Autoradiographic methods and principles for study of the nervous system with thymidine—H3. In: Contemporary Research Methods in Neuroanatomy. W. J. H. Nauta and S. O. E. Ebbesson (eds.). Springer-Verlag, New York, pp. 252–274.

    Chapter  Google Scholar 

  • Stell, W. K. (1967). The structure and relationships of horizontal cells and photoreceptor-bipolar synaptic complexes in goldfish retina. Amer. J. Anat. 121:401–424.

    Article  PubMed  CAS  Google Scholar 

  • Stell, W. K. (1972). The morphological organization of the vertebrate retina. In: Handbook of Sensory Physiology, Vol. VII/2. Physiology of Photoreceptor Organs. M. G. F. Fuortes (ed.). Springer-Verlag, New York, pp. 111–213.

    Google Scholar 

  • Stell, W. K., and D. O. Lightfoot (1975). Color-specific interconnections of cones and horizontal cells in the retina of the goldfish. J. comp. Neurol. 159:473–502.

    Article  PubMed  CAS  Google Scholar 

  • Straznicky, K., and R. M. Gaze (1971). The growth of the retina in Xenopus laevis: an autoradiographic study. J. Embryol. Exp. Morph. 26:67–79.

    PubMed  CAS  Google Scholar 

  • Straznicky, K., and R. M. Gaze (1972). The development of the tectum in Xenopus laevis: an autoradiographic study. J. Embryol. Exp. Morph. 26:87–115.

    Google Scholar 

  • Wagner, H.-J. (1975). Quantitative changes of synaptic ribbons in the cone pedicles of Nannacara: Light dependent or governed by a circadian rhythm? In: Vision in Fishes: New Approaches in Research. M. A. Ali (ed.). Plenum Press, New York, pp. 679–686.

    Google Scholar 

  • Watson, W. E. (1974). Physiology of neuroglia. Physiol. Rev. 54:245–271.

    PubMed  CAS  Google Scholar 

  • Weiss, P. (1949). Differential growth. In: The Chemistry and Physiology of Growth. A. K. Parpart (ed.). Princeton University Press, New Jersey, pp. 135–186.

    Google Scholar 

  • Wilson, M. A. (1971). Optic nerve fibre counts and retinal ganglion cell counts during development of Xenopus laevis (Daudin). Quart. J. Exp. Physiol. 56:83–91.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Plenum Press, New York

About this chapter

Cite this chapter

Johns, P.R. (1979). Growth and Neurogenesis in Adult Goldfish Retina. In: Freeman, R.D. (eds) Developmental Neurobiology of Vision. NATO Advanced Study Institutes Series, vol 27. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3605-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3605-1_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3607-5

  • Online ISBN: 978-1-4684-3605-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics