A Hypothesis on the Efferent System from the Visual Cortex

  • Giorgio M. Innocenti
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 27)


There is evidence suggesting that the radial and tangential distributions of neurons within the sensory cortices may be main factors determining their functional properties. Cortical neurons projecting to different structures have, in general, different radial location and can have different tangential location; thus probably the cortex sends to different structures messages of different format. In the case of neurons efferent to the contralateral cortex, via the corpus callosum, the restricted radial and tangential distributions typical of the adult are acquired postnatally in somatosensory and visual areas of the cat, through a process of tangential and radial reductions from a widespread neonatal distribution. In the visual cortex, this maturational process can be affected by strabismus or by monocular deprivation. These manipulations of the visual experience result in adults having a more widespread distribution of callosal neurons in area 17 than normally observed.


Corpus Callosum Visual Cortex Receptive Field Auditory Cortex Tangential Location 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles, M. and M. H. Goldestein, Jr. (1970). Functional architecture in cat primary auditory cortex: columnar organization and organization according to depth. J. Neurophysiol. 33:172–187.PubMedGoogle Scholar
  2. Albus, K. (1975). A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat. The precision of the topography. Exp. Brain Res. 24:159–179.PubMedCrossRefGoogle Scholar
  3. Albus, K. and F. Donate-Oliver (1977). Cells of origin of the occipito-pontine projection in the cat: functional properties and intracortical location. Exp. Brain Res. 28:167–174.PubMedCrossRefGoogle Scholar
  4. Berlucchi, G., M. S. Gazzaniga and G. Rizzolatti (1967). Microelectrode analysis of transfer of visual information by the corpus callosum. Arch. ital. Biol. 105:583–596.PubMedGoogle Scholar
  5. Bilge, M., A. Bingle, K. N. Seneviratne and D. Whitteridge (1967). A map of the visual cortex in the cat. J. Physiol. (Lond.) 191:116P–118P.Google Scholar
  6. Camarda, R. and G. Rizzolatti (1976). Receptive fields of cells in the superficial layers of the cat’s area 17. Exp. Brain Res. 24:423–427.PubMedCrossRefGoogle Scholar
  7. Caminiti, R., P. Barbaresi and G. M. Innocenti (1978). Callosal neurones in SI and SII of the kitten. Neuroscience Letters, Suppl. 1:S342.Google Scholar
  8. Caminiti, R., G. M. Innocenti and T. Manzoni (1979). The anatomical substrate of callosal messages from SI and SII in the cat. Exp. Brain Res., in press.Google Scholar
  9. Choudhury, B. P., D. Whitteridge and M. E. Wilson (1965). The function of the callosal connections of the visual cortex. Quart. J. exp. Physiol. 50:214–219.PubMedGoogle Scholar
  10. Creutzfeldt, O., G. M. Innocenti and D. Brooks (1974). Vertical organization in the visual cortex (area 17) in the cat. Exp. Brain Res. 21:315–336.PubMedGoogle Scholar
  11. Donaldson, I. M. L. and D. Whitteridge (1977). The nature of the boundary between cortical visual areas II and III in the cat. Proc. R. Soc. Lond. B 199:445–462.PubMedCrossRefGoogle Scholar
  12. Gilbert, C. D. and J. P. Kelly (1975). The projections of cells in different layers of the cat’s visual cortex. J. comp. Neur. 163:81–106.PubMedCrossRefGoogle Scholar
  13. Gilbert, C. D. (1977). Laminar differences in receptive field properties of cells in cat primary visual cortex. J. Physiol. (Lond.) 268:391–421.Google Scholar
  14. Hubel, D. H. and T. N. Wiesel (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. (Lond.) 160:106–154.Google Scholar
  15. Hubel, D. H. and T. N. Wiesel (1965). Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28:229–289.PubMedGoogle Scholar
  16. Hubel, D. H. and T. N. Wiesel (1967). Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat. J. Neurophysiol. 30:1561–1573.PubMedGoogle Scholar
  17. Hubel, D. H. and T. N. Wiesel (1968). Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 196:215–243.Google Scholar
  18. Hubel, D. H. and T. N. Wiesel (1974). Sequence regularity and geometry of orientation columns in the monkey striate cortex. J. comp. Neur. 158:267–294.PubMedCrossRefGoogle Scholar
  19. Imig, T. J. and J. F. Brugge (1976). Relationship between binaural interaction columns and commissural connections of the primary auditory cortical fields (A1) in the cat. Neurosci. Abs. 2:26.Google Scholar
  20. Imig, T. J. and H. O. Adrian (1977). Binaural columns in the primary field (A1) of cat auditory cortex. Brain Res. 138:241–257.PubMedCrossRefGoogle Scholar
  21. Innocenti, G. M. (1978). Postnatal development of interhemispheric connections of the cat visual cortex. Arch. ital. Biol. 116:463–470.PubMedGoogle Scholar
  22. Innocenti, G. M. (1979). Adult and neonatal characteristics of the callosal zone at the boundary between areas 17 and 18 in the cat. In: Structure and Function of the Cerebral Commissures. I. Steele Russel. M. W. Van Hof and G. Berlucchi, eds. Macmillan, London. In press.Google Scholar
  23. Innocenti, G. M. and L. Fiore (1976). Morphological correlates of visual field transformation in the corpus callosum. Neuroscience Letters 2:245–252.PubMedCrossRefGoogle Scholar
  24. Innocenti, G. M., L. Fiore and R. Caminiti (1977). Exuberant projection into the corpus callosum from the visual cortex of newborn cats. Neuroscience Letters 4:237–242.PubMedCrossRefGoogle Scholar
  25. Innocenti, G. M. and D. Frost (1978). Visual experience and the development of the efferent system to the corpus callosum. Neurosci. Abs. 4:1513.Google Scholar
  26. Jones, E. G., H. Burton and R. Porter (1975). Commissural and cortico-cortical “columns” in the somatic sensory cortex of primates. Science 190:572–574.PubMedCrossRefGoogle Scholar
  27. Kelly, J. P. and D. C. Van Essen (1974). Cell structure and function in the visual cortex of the cat. J. Physiol. (Lond.) 238:515–547.Google Scholar
  28. Leventhal, A. G. and H. V. B. Hirsch (1978). Receptive-field properties of neurons in different laminae of visual cortex of the cat. J. Neurophysiol. 41:948–962.PubMedGoogle Scholar
  29. Lund, J. S., R. D. Lund, A. E. Hendrickson, A. H. Bunt and A. F. Fuchs (1975). The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J. comp. Neur. 164:287–304.PubMedCrossRefGoogle Scholar
  30. Mountcastle, V. B. (1957). Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J. Neurophysiol. 20:408–434.PubMedGoogle Scholar
  31. Mountcastle, V. B. (1978). An organizing principle for cerebral function: the unit module and the distributed system. In: The Mindful Brain. G. M. Edelman and V. B. Mountcastle (eds.). M.I.T. Press, Cambridge, Massachusetts, pp. 7–50.Google Scholar
  32. Palmer, L. A. and A. C. Rosenquist (1974). Visual receptive fields of single striate cortical units projecting to the superior colliculus in the cat. Brain Res. 67:27–42.PubMedCrossRefGoogle Scholar
  33. Palmer, L. A., A. C. Rosenquist and R. J. Tusa (1978). The retinotopic organization of lateral suprasylvian visual areas in the cat. J. comp. Neur. 177:237–256.PubMedCrossRefGoogle Scholar
  34. Poggio, G. F., R. W. Doty, Jr. and W. H. Talbot (1977). Foveal striate cortex of behaving monkey: single-neuron responses to square-wave gratings during fixation of gaze. J. Neurophysiol. 40:1369–1391.PubMedGoogle Scholar
  35. Sanides, D., W. Fries and K. Albus (1978). The corticopontine projection from the visual cortex of the cat: an autoradiographic investigation. J. comp. Neur. 179:77–88.PubMedCrossRefGoogle Scholar
  36. Shatz, C. (1977). Abnormal interhemispheric connections in the visual system of Boston Siamese cats: a physiological study. J. comp. Neur. 171-229-246.Google Scholar
  37. Tusa, R. J., L. A. Palmer and A. C. Rosenquist (1978). The retinotopic organization of area 17 (striate cortex) in the cat. J. comp. Neur. 177:213–236.PubMedCrossRefGoogle Scholar
  38. Wise, S. P. and E. G. Jones (1977). Cells of origin and terminal distribution of descending projections of the rat somatic sensory cortex. J. comp. Neur. 175:129–158.PubMedCrossRefGoogle Scholar
  39. Zeki, S. M. (1978). The cortical projections of foveal striate cortex in the rhesus monkey. J. Physiol. (Lond.) 277:227–244.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Giorgio M. Innocenti
    • 1
  1. 1.Institute of AnatomyUniversity of LausanneLausanneSwitzerland

Personalised recommendations