Integration of Visual and Nonvisual Information in Nucleus Reticularis Thalami of the Cat

  • Fritz Schmielau
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 27)


In cats with grey für extracellular recordings from 83 neurons of the nucleus reticularis thalami were obtained. Spontaneous activity and responses to electrical and light stimuli were investigated. Electrical stimuli were applied to each optic nerve, optic chiasm, visual cortex, superior colliculus, and to the mesencephalic reticular formation. Stationary light spots of various diameters were presented monocularly and binocularly. The corticofugal influence was assessed by reversibly inactivating the exposed parts of visual areas 17 and 18. Anatomical material (Szentágothai et al., 1972) and recent neurophysiological data (Dubin and Cleland, 1977) suggest that neurons of the perigeniculate nucleus are involved in inhibition of geniculate relay cells; therefore, special attention has been given to the possible role of nucleus reticularis thalami neurons as extrinsic interneurons of the dorsal lateral geniculate nucleus (LGN).

The perigeniculate nucleus apparently is a functional visual substructure of the nucleus reticularis thalami, receiving predominantly monosynaptic input from Y-cells of both retinae, whereas the rest of the nucleus reticularis thalami above the LGN is mainly innervated polysynaptically. Neurons of the nucleus reticularis thalami are identified as interneurons by their transsynaptic activation due to visual cortical stimulation and their typical response scatter to optic nerve, optic chiasm, visual cortex, and superior colliculus stimulation. Each of these stimuli usually elicits a burst of spikes (primary excitation) which, in most cases, is followed by a period of inhibition. Stimulation of the mesencephalic reticular formation causes inhibition in 63% (n = 52) and activation of 11% (n = 9) of nucleus reticularis thalami cells. Inactivation of the visual cortex prolongs the primary excitation caused by optical chiasm, visual cortex, and superior colliculus stimulation and reduces the strength of postexcitatory inhibition reversibly.

The model that is proposed explains binocular inhibition and disinhibitory effects of mesencephalic reticular formation stimulation in LGN relay cells via a pathway including the nucleus reticularis thalami. In addition, corticofugal effects that were described recently (Schmielau and Singer, 1977a; Schmielau and Singer, 1977b) are in accordance with the hypothesis.


Visual Cortex Superior Colliculus Lateral Geniculate Nucleus Optic Chiasm Nucleus Reticularis Thalamus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlsen, G., and S. Lindström (1978). Axonal branching of functionally identified neurones in the lateral geniculate body of the cat. NELED Suppl. 1:156.Google Scholar
  2. Ahlsen, G., and S. Lindström (1978). Projection of perigeniculate neurones to the lateral geniculate body in cat. NELED Suppl. 1:367.Google Scholar
  3. Akimoto, H., and O. Creutzfeldt (1958). Arch. Psychiat. Nervenkr. 196:539 pp.Google Scholar
  4. Bowsher, D. (1970). Reticular projections to the lateral geniculate in cat. Brain Res. 23:247–249.PubMedCrossRefGoogle Scholar
  5. Burke, W., and A. J. Sefton (1966). Discharche patterns of principal cells and interneurones in LGN in the rat. J. Physiol. 187:201–212.PubMedGoogle Scholar
  6. Creutzfeldt, O., and H. Akimoto (1958). Konvergenz and gegenseitige Beeinflussung von Impulsen aus der Retina und den unspezifischen Thalamuskernen auf einzelne Neurone des optischen Kortex. Arch. Psychiat. Nervenkr. 196:520–538.PubMedCrossRefGoogle Scholar
  7. Dubin, M. W., and B. G. Cleland (1977). Organization of visual inputs to interneurons of lateral geniculate nucleus of the cat. J. Neurophysiol. 40:410–427.PubMedGoogle Scholar
  8. Garey, L. (1978). This volume.Google Scholar
  9. Guillery, R. W. (1978). Discussion: Symposium, Development and chemical specificity of neurons, 11–15 September 1978, Davos, Schweiz.Google Scholar
  10. Holländer, H. (1978). Unpublished results, personal communication.Google Scholar
  11. Jones, E. G. (1975). Some aspects of the organization of the thalamic reticular complex. J. Comp. Neurol. 162:285–308.PubMedCrossRefGoogle Scholar
  12. Montero, V. M., R. W. Guillery, and C. N. Woolsey (1977). Retinotopic organization within the thalamic reticular nucleus demonstrated by a double label autoradiographic technique. Brain Res. 138:407–421.PubMedCrossRefGoogle Scholar
  13. Moruzzi, G., and H. W. Magoun (1949). Brain stem reticular formation and activation of the EEG. Electroenceph. Clin. Neurophysiol. 1:455–473.PubMedGoogle Scholar
  14. Negishi, K., E. S. Lu, and M. Verzeano (1961). Neuronal activity in the lateral geniculate body and the nucleus reticularis of the thalamus. Vis. Res. 1:343–353.CrossRefGoogle Scholar
  15. O’Leary, J. L. (1940). A structural analysis of the lateral geniculate nucleus in the cat. J. Comp. Neurol. 73:405–430.CrossRefGoogle Scholar
  16. Ranson, S. W., and S. L. Clarke (1953). Anatomy of the nervous system. Saunders, Philadelphia and London.Google Scholar
  17. Rose, J. E. (1952). The cortical connections of the reticular complex of the thalamus. Res. Publ. Ass. Nerv. Ment. Dis. 30:454–479.Google Scholar
  18. Sanderson, K. J. (1971). The projection of the visual field of the lateral geniculate and medial interlaminar nuclei in the cat. J. Comp. Neurol. 143:101–108.PubMedCrossRefGoogle Scholar
  19. Sasaki, K., T. Shimono, H. Oka, T. Yamamoto, and Y. Matsuda (1976). Effects of stimulation of the midbrain reticular formation upon thalamocortical neurones responsible for cortical recruiting responses. Exp. Brain Res. 26:261 pp.Google Scholar
  20. Satinsky, D. (1966). Reticular influences on lateral geniculate neuron activity. Electroenceph. Clin. Neurophysiol. 25:543–549.CrossRefGoogle Scholar
  21. Scheibel, M. E., and A. B. Scheibel (1966). The organization of the nucleus reticularis thalami: a Golgi study. Brain Res. 1:43–62.PubMedCrossRefGoogle Scholar
  22. Schmielau, F. (1975). Corticale Beeinflussung der Verarbeitung visueller Information im Corpus geniculatum laterale. Dissertation, Fachbereich Physik der Ludwig-Maximilians-Universität München.Google Scholar
  23. Schmielau, F. (1978). Cortical influence of the nucleus reticularis thalami in cat: a combined neurophysiological and neuroanatomical study. J. Comp. Neurol. (in preparation).Google Scholar
  24. Schmielau, F., and W. Singer (1975). Corticofugal control of the cat lateral geniculate nucleus. Exp. Brain Res. (Suppl.) 23:363.Google Scholar
  25. Schmielau, F., and W. Singer (1977a). The role of visual cortex for binocular interactions in the cat lateral geniculate nucleus. Brain Res. 120:354–361.PubMedCrossRefGoogle Scholar
  26. Schmielau, F., and W. Singer (1977b). The importance of visual cortex in reticular disinhibition in cat LGN. Proc. Int. U. Physiol. Sc. 13:1994.Google Scholar
  27. Singer, W. (1973). The effect of mesencephalic reticular stimulation on intracellular potentials of cat lateral geniculate neurons. Brain Res. 61:35–54.PubMedCrossRefGoogle Scholar
  28. Singer, W. (1977). Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system. Physiol. Rev. 57:386–420.PubMedGoogle Scholar
  29. Singer, W., and N. Bedworth (1973). Inhibitory interaction between X and Y units in the cat lateral geniculate nucleus. Brain Res. 49:291–307.PubMedCrossRefGoogle Scholar
  30. Singer, W., and U. Dräger (1972). Postsynaptic potentials in relay neurons of the cat lateral geniculate nucleus after stimulation of the mesencephalic reticular formation. Brain Res. 41:214–220.PubMedCrossRefGoogle Scholar
  31. Singer, W., F. Tretter, and M. Cynader (1976). The effect of reticular stimulation on spontaneous and evoked activity in the cat visual cortex. Brain Res. 102:71–90.PubMedCrossRefGoogle Scholar
  32. Snider, R. S., and W. T. Niemer (1970). A stereotaxic atlas of the cat brain. Univ. of Chicago Press, Chicago, Ill., 3d ed.Google Scholar
  33. Sumimoto, I., M. Nakamura, and K. Iwama (1976). Location and function of the so-called interneurons of rat lateral geniculate body. Exp. Neurol. 51:110–123.CrossRefGoogle Scholar
  34. Sumimoto, I., M. Sugitani, and K. Iwama (1977). Disinhibition of perigeniculate reticular neurons following chronic ablation of the visual cortex in rats. Tohoku J. exp. Med. 122:321–329.CrossRefGoogle Scholar
  35. Suzuki, H., and E. Kato (1966). Binocular interaction at cat’s lateral geniculate body. J. Neurophysiol. 29:909–920.PubMedGoogle Scholar
  36. Szentágothai, J. (1972). Lateral geniculate body structure and eye movement. In: Cerebral Control of Eye Movements and Motion Perception. S, Karger, Basel.Google Scholar
  37. Szentágothai, J., J. Hamori, and T. Tömböl (1966). Degeneration and electron microscope analysis of the synaptic glomeruli in the lateral geniculate body. Exp. Brain Res. 2:283–301.PubMedCrossRefGoogle Scholar
  38. Thuma, B. D. (1928). Studies on the diencephalon of the cat. I. The cytoarchitecture of the corpus geniculatum laterale. J. Comp. Neurol. 46:173–199.CrossRefGoogle Scholar
  39. Todd, N. B. (1977). Cats and commerce. Sci. Am. 237:100–107.CrossRefGoogle Scholar
  40. Tömböl, T. (1967). Short axon neurons and their synaptic relations in the specific thalamic nuclei. Brain Res. 3:307–326.PubMedCrossRefGoogle Scholar
  41. Tömböl, T. (1969). Two types of short axon (Golgi 2nd) interneurones in the specific thalamic nuclei. Acta morph. Acad. Sci. hung. 17:285–297.Google Scholar
  42. Tömböl, T. (1978). Unpublished results, personal communication.Google Scholar
  43. Vastola, E. F. (1960). Binocular inhibition in the lateral geniculate body. Exp. Neurol. 2:221–231.PubMedCrossRefGoogle Scholar
  44. Yingling, C. D., and J. E. Skinner (1975). Regulation of unit activity in nucleus reticularis thalami by the mesencephalic reticular formation and the frontal granular cortex. Electroencephal. and clin. Neurophys. 39:635–642.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Fritz Schmielau
    • 1
  1. 1.Institute for Medical PsychologyLudwig-Maximilians University of MunichMunichGermany

Personalised recommendations