Advertisement

A Critique of Astrophysical Applications of Hagedorn’s Bootstrap

Part of the Ettore Majorana International Science Series book series (EMISS, volume 2)

Abstract

Hagedorn’s bootstrap should not be applied to hadronic matter at densities large against nuclear densities. The correct predictions of the thermodynamical model do not use any relation between the mass of the fireballs and their size, whereas the astrophysical applications depend on the unreasonable assumption that the size is independent of the mass. Moreover, the most spectacular prediction of the bootstrap, namely violent black hole explosions yielding 1015 g in the last millisecond, is completely unfounded, even if such an assumption is made.

Keywords

Black Hole Transverse Momentum High Energy Density Hadronic Matter Thermal Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    V. Canuto - Ann.Rev.Astron.Astrophys. 12 (1974) 167; 13 (1975) 335.Google Scholar
  2. 2).
    H. Grote, J. Ranft and R. Hagedorn - Atlas of Particle Production Spectra, CERN (1970).Google Scholar
  3. 3).
    M.B. Kislinger and P.D. Morley - Phys.Rev. D13 (1976) 2765.Google Scholar
  4. 4).
    R. Carlitz, S. Frautschi and W. Nahm - Astronomy and Astrophysics 26 (1973) 171.Google Scholar
  5. 5).
    S.W. Hawking, Commun.Math.Phys. 43 (1975) 199.CrossRefGoogle Scholar
  6. 6).
    W. Nahm - Nuclear Phys. B68 (1974) 111.CrossRefGoogle Scholar
  7. 7).
    S.W. Hawking and D. N. Page - Astrphys.J. 206 (1976) 1.CrossRefGoogle Scholar
  8. 8).
    B.J. Carr - Astrophys.J. 201 (1975) 1.CrossRefGoogle Scholar
  9. 9).
    F.J.E. Peebles - “The effect of a lumpy matter distribution on growth of irregularities in the expanding universe” (October 1973), unpublished.Google Scholar
  10. 10).
    M. Yoshimura - Phys.Rev.Letters 41 (1978) 281.CrossRefGoogle Scholar
  11. 11).
    J. Ellis, M.K. Gaillard and D.V. Nanopoulos - CERN Preprint TH. 2596 (1978).Google Scholar
  12. 12).
    C.E. DeTar - Phys.Rev. D3 (1971) 128.CrossRefGoogle Scholar
  13. 13).
    L. Van Hove - Physics Reports 1 (1971) 347.CrossRefGoogle Scholar
  14. 14).
    J. Ranft - Phys.Letters 41B (1972) 613.CrossRefGoogle Scholar
  15. 15).
    F.E. Low - Phys.Rev. D12 (1975) 163.CrossRefGoogle Scholar
  16. 16).
    J. Kogut and L. Susskind - Phys.Rev. D9 (1974) 3501.Google Scholar
  17. 17).
    X. Artru and G. Mennessier - Nuclear Phys. B70 (1974) 93.CrossRefGoogle Scholar
  18. 18).
    R. Hagedorn - Nuclear Phys. B24 (1970) 93.CrossRefGoogle Scholar
  19. 19).
    I.Ya. Pomeranchuk - Dokl.Akad.Nauk SSSR 78 (1951) 889.Google Scholar
  20. 20).
    M.I. Gorestein, V.A. Miransky, V.P. Shelest and G.M. Zinoviev - Phys.Letters 45B (1973) 475.Google Scholar
  21. 21).
    N. Cabibbo and G. Parisi - Phys.Letters 59B (1975) 67.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • W. Nahm
    • 1
  1. 1.CERNGenevaSwitzerland

Personalised recommendations