The Infra-Red Behaviour of the Running Coupling Constant in Yang-Mills Theories

  • F. Zachariasen
Part of the Ettore Majorana International Science Series book series (EMISS, volume 2)


In Quantum Electrodynamics (QED) the infra-red (IR) structure of the theory is well understood. In Quantum Chromodynamics (QCD) it is not, though considerable effort has been spent in recent years in studying it. One reason for this interest is the hope that (because of the apparently stronger IR singularities in QCD over those in QED) confinement can be understood through the IR properties of QCD. Indeed, it has been argued1) that an “effective potential” in momentum space between quarks is proportional to g2(q2)/q2 where g(q2) is singular in the IR (that is, as q2 → 0) then the “effective potential” produces confinement. In particular, if g2(q2) ~ 1/q2 as q2 → 0, this can be crudely translated into a potential growing linearly with distance for large distances. There are clearly difficulties and uncertainties with these ideas. First the identification of g2(q2)/q2 as an “effective potential” has been made only in a leading log study of the IR properties of QCD, and an investigation of non-leading logs casts doubt on it2). Second, g2(q2) is not really gauge invariant, and it is clearly uncomfortable to attribute a physical result, such as confinement, to a non-gauge invariant quantity.


Ward Identity Vertex Function Gluon Propagator Dyson Equation Kinematic Singularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    J.M. Cornwall and G. Tiktopoulos, Phys. Rev. D10, 2937 (1977).Google Scholar
  2. 2).
    J. Frenkel et al., Oxford preprint 67 /76 (1976).Google Scholar
  3. 3).
    J.M. Cornwall and G. Tiktopoulos, see Ref. 1).Google Scholar
  4. 4).
    E.S. Fradkín, Nuclear Phys. 76, 588 (1966).CrossRefGoogle Scholar
  5. 5).
    J.S. Ball and F. Zachariasen, CALTECH preprint 68–647 (1978).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • F. Zachariasen
    • 1
  1. 1.CERNGenevaSwitzerland

Personalised recommendations