Supersymmetry Approach to the Unification of Interactions

  • John H. Schwarz
Part of the Ettore Majorana International Science Series book series (EMISS, volume 2)


Various trends and problems in supersymmetry theory are discussed. The requirement that gravitation be consistently unified with the other interactions in a finite theory is very restrictive with far-reaching consequences for the other interactions. A specific example based on the spinning-string theory is described in some detail. In this model the elementary particles lie on linear Regge trajectories with a common slope determined by Newton’s constant. As a result the spectrum suggests a limiting temperature corresponding to the Planck mass, rather than to the pion mass as in hadronic string theories. The superspace approach to supersymmetry is also presented. While this formalism has so far only been applied to the reformulation of known theories (in a more geometrical way) it is hoped that it will provide a framework appropriate for obtaining insights and extensions that would otherwise be elusive.


String Theory Open String Supergravity Theory Planck Mass Supergravity Multiplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Gliozzi, J. Scherk, and D. Olive, Nucl. Phys. B122 (1977) 253.CrossRefGoogle Scholar
  2. 2.
    L. Brink, J.H. Schwarz, and J. Scherk, Nucl. Phys. B121 (1977)77.Google Scholar
  3. 3.
    N = 1 supergravity was formulated by D.Z. Freedman, P. van Nieuwenhuizen, and S. Ferrara, Phys. Rev. D13 (1976) 3214; S. Deser and B. Zumino, Phys. Lett. 62B (1976) 335.Google Scholar
  4. 4.
    For a review of extended supergravity theories and a complete list of references to them see: J. Scherk, LPTENS 78/21, Invited talk at the July 1978 Cargèse Institute.Google Scholar
  5. 5.
    A. Salam and J. Strathdee, Nucl. Phys. B80 (1974) 499; P.H. Dondi and M. Sohnius, Nucl. Phys. B81 (1974) 317.Google Scholar
  6. 6.
    R. Haag, J.T. Opuszanski, and M. Sohnius, Nucl. Phys. B88 (1975) 257.CrossRefGoogle Scholar
  7. 7.
    M. Kaku, P.K. Townsend, and P. van Nieuwenhuizen, Phys. Lett. 69B (1977) 303; Phys. Rev. Lett. 39 (1977) 1109.Google Scholar
  8. 8.
    For a review see P. van Nieuwenhuizen, CERN preprint TH.2473, Orbis Scientiae (Coral Gables) 1978.Google Scholar
  9. 9.
    M. Gell-Mann, to be published.Google Scholar
  10. 10.
    D.Z. Freedman and A. Das, Nucl. Phys. B120 (1977) 221.CrossRefGoogle Scholar
  11. 11.
    S. Hawking, lecture given at San Francisco EST meeting, Jan. 1978.Google Scholar
  12. 12.
    P. Fayet, Nucl. Phys. B113 (1976) 135.CrossRefGoogle Scholar
  13. 13.
    Dual Theory“, edited by M. Jacob, North-Holland Publ. Co. (1974); J. Scherk, Rev. Mod. Phys. 47 (1975) 123.Google Scholar
  14. 14.
    A. Neveu and J.H. Schwarz, Nucl. Phys. B31 (1971) 86.CrossRefGoogle Scholar
  15. 15.
    M. Ademollo et al., Nucl. Phys. B1l1 (1976) 77.Google Scholar
  16. 16.
    P. Di Vecchia and S. Ferrara, Nucl. Phys. B130 (1977) 93; E. Witten, Phys. Rev. D16 (1977) 2991.Google Scholar
  17. 17.
    R. Hagedorn, Nuovo Cimento Suppl. 3 (1965) 147; S. Frautschi, Phys. Rev. D3 (1971) 2821.Google Scholar
  18. 18.
    J. Scherk and J.H. Schwarz, Nucl. Phys. B81 (1974) 118; Phys. Lett. 57B (1975) 463.Google Scholar
  19. 19.
    Chan Hong-Mo and J.E. Paton, Nucl. Phys. BIO (1969) 519.Google Scholar
  20. 20.
    Many of these ideas were discussed previously in ref. 18 and J. Schwarz, Caltech preprint CALT-68–637, Orbis Scientiae (Coral Gables) 1978.Google Scholar
  21. 21.
    E.C. Poggio and H.N. Pendleton, Phys. Lett. 72B (1977) 200; D.R.T. Jones, Phys. Lett. 72B (1977) 199.Google Scholar
  22. 22.
    L. Brink, M. Gell-Mann, P. Ramond, and J.H. Schwarz, Phys. Lett. 74B (1978) 336 (Erratum 76B (1978) 664); Phys. Lett. 76B (1978) 417.Google Scholar
  23. 23.
    L. Brink, M. Gell-Mann, P. Ramond, and J.H. Schwarz, Caltech preprint 68–656, to be published in Nucl. Phys. B.Google Scholar
  24. 24.
    M. Gell-Mann, P. Ramond, and J.H. Schwarz, Caltech preprint 68–677, to be published in the proceedings of the XIX International Conference on High Energy Physics, Tokyo 1978.Google Scholar
  25. 25.
    R. Arnowitt and P. Nath, Phys. Lett. 56B (1975) 177 and 65B (1976) 73.Google Scholar
  26. 26.
    J. Wess and B. Zumino, Phys. Lett. 66B (1977) 361 and 74B (1978) 51.Google Scholar
  27. 27.
    See, for example, R. Arnowitt and P. Nath, Northeastern Univ. Phys. Lett. 78B (1978) 581.Google Scholar
  28. 28.
    W. Siegel, Harvard preprints HUTP-77/A068,A077,A080,A089 and HUTP-78/A014,A023;W. Siegel and S.J. Gates Jr, Harvard preprint HUTP-78/A019; S.J. Gates Jr. and J.A. Shapiro, MIT preprint CTP # 709.Google Scholar
  29. 29.
    S. MacDowell, Yale preprint 1978.Google Scholar
  30. 30.
    M. Gell-Mann, P. Ramond, and J.H. Schwarz in Proceedings of the Dirac Symposium, 1978 (to be published).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • John H. Schwarz
    • 1
  1. 1.Laboratoire de Physique Théoriquel’Ecole Normale SupérieureParis Cedex 05France

Personalised recommendations