Ericson Fluctuations and the New Argonne Data on πN Scattering

  • Steven C. Frautschi
Part of the Ettore Majorana International Science Series book series (EMISS, volume 2)


Most people nowadays think of hadrons as made of quark constituents trapped in a potential well. The well may or may not be infinitely high; it must rise at least above the present energy range to make free quarks so rare. As in any potential well, we expect to find excited states right up to the top of the well. We also expect the density of levels to rise rapidly with mass since there are so many ways to form a highly excited level: any one of the valence quarks can be raised to an excited level, or more than one can be raised at the same time, or quark pairs or gluons can be added.


Level Density Hadron Physic Individual Resonance Resonance Term High Mass Resonance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Ericson and T. Mayer-Kuckuk, Ann. Rev. Nucl. Sci. 16, 183 (1966).CrossRefGoogle Scholar
  2. 2.
    R. Hagedorn, Nuovo Cimento Suppl. 3, 147 (1965).Google Scholar
  3. 3.
    Dual Theory,“ M. Jacob editor, North-Holland Pub. Co. (1974).Google Scholar
  4. 4.
    A. Chodos, R. L. Jaffe, K. Johnson, C. B. Thorn, and V. F. Weisskopf, Phys. Rev. D9, 3471 (1974).Google Scholar
  5. 5.
    S. Frautschi, Nucl. Phys. B91, 125 (1975).CrossRefGoogle Scholar
  6. 6.
    E. Fermi, Progr. Theor. Phys. (Kyoto) 5, 570 (1950).CrossRefGoogle Scholar
  7. 7.
    R. Hagedorn and J. Ranft, Nuovo Cimento Suppl. 6, 169 (1968).Google Scholar
  8. 8.
    J. Ernst, P. von Brentano, and T. Mayer-Kuckuk, Phys. Letters 19, 41 (1965).CrossRefGoogle Scholar
  9. 9.
    C. Hamer, Nucl. Phys. B105, 153 (1976).CrossRefGoogle Scholar
  10. 10.
    P. A. Moldauer, Phys. Rev. 157, 907 (1967), and 171, 1164 (1968); V. L. Lyuboshitz and M. I. Podgoretsky, Yad. Fiz. 24, 214 (1976) [Sov. Journ. Nucl. Phys. 24, 110 (1976)].Google Scholar
  11. 11.
    T. Ericson, “Fluctuating Phenomena and Statistical Reactions,” CERN TH-406 (1964)(unpublished).Google Scholar
  12. 12.
    C. W. Akerlof, R. H. Híeber, A. D. Krisch, K. W. Edwards,L. G. Ratner, and K. Ruddick, Phys. Rev. 159, 1138 (1967).CrossRefGoogle Scholar
  13. 13.
    J. V. Allaby, G. Bellettini, G. Cocconi, A. N. Diddens,M. L. Good, G. Matthiae, E. J. Sacharidis, A. Silverman, and A. M. Wetherell, Phys. Letters 23, 389 (1966).Google Scholar
  14. 14.
    S. Frautschi, Nuovo Cimento 12A, 133 (1972).CrossRefGoogle Scholar
  15. 15.
    P. J. Carlson, Phys. Letters B45, 161 (1973).Google Scholar
  16. 16.
    F. H. Schmidt, C. Baglin, P. J. Carlson, A. Eide, V. Gracco, E. Johansson, and A. Lundby, Phys. Letters B45, 157 (1973).Google Scholar
  17. 17.
    K. A. Jenkins, L. E. Price, R. Klem, R. J. Miller, P. Schreiner, H. Courant, Y. I. Makdisi, M. L. Marshak, E. A. Peterson, and K. Ruddick, Phys. Rev. Lett. 40, 425 (1978), and 40, 429 (1978).Google Scholar
  18. 18.
    S. J. Brodsky and G. R. Farrar, Phys. Rev. Lett. 31 1153 (1973); V. A. Matveev, R. M. Muradyan, and A. N. Tavkhelidze, Lett. Nuovo Cimento 7, 719 (1973).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Steven C. Frautschi
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations