Advertisement

Supersymmetry Formulated in Superspace

  • R. Arnowitt
  • Pran Nath
Part of the Studies in the Natural Sciences book series (SNS)

Abstract

Properties of the superspace formulation of supergravity and gauge supersymmetry are examined. The interrelations between the two theories are described. The existence of the supergravity torsion in the Riemannian superspace of gauge supersymmetry is explained. The ultraviolet finiteness of gauge supersymmetry to arbitrary loop order is discussed. The finiteness is shown using the Green’s functions in the linearized harmonic gauge. The general status of gauge supersymmetry and supergravity is commented on.

Keywords

Bianchi Identity Spontaneous Symmetry Breaking Higgs Potential Spontaneous Breaking Gauge Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 2.
    A. Salam and J. Strathdee, Nucl. Phys. B76, 477 (1974).MathSciNetADSCrossRefGoogle Scholar
  2. 3.
    See e.g., P. Fayet and S. Ferrara, Phys. Rep. 32C, 5 (1977).MathSciNetGoogle Scholar
  3. 4.
    P. Nath and R. Arnowitt, Phys. Lett. 56B, 171 (1975).ADSGoogle Scholar
  4. R. Arnowitt and P. Nath, Gen. Relativ. Gravit. 7, 89 (1976).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    D. Freedman, P. van Nieuwenhuizen and S. Ferrara, Phys. Rev. D13, 3214 (1976).ADSGoogle Scholar
  6. S. Deser and B. Zumino, Phys. Lett. B62, 335 (1976).MathSciNetADSGoogle Scholar
  7. 7.
    R. Arnowitt, P. Nath and B. Zumino, Phys. Lett. 56B, 81 (1975).MathSciNetADSGoogle Scholar
  8. 8.
    P. Nath and R. Arnowitt, Phys. Lett. 65B, 73 (1976).MathSciNetADSGoogle Scholar
  9. J. Wess and B. Zumino, Phys. Lett. 66B, 361 (1977).MathSciNetADSGoogle Scholar
  10. L. Brink, M. Gell-Mann, P. Ramond and J. Schwarz, Phys. Lett. 74B, 336 (1978).MathSciNetADSGoogle Scholar
  11. L. Brink, M. Gell-Mann, P. Ramond and J. Schwarz, Phys. Lett. 76B, 417 (1978).MathSciNetADSGoogle Scholar
  12. R. Arnowitt and P. Nath, Phys. Lett. 78B, 581 (1978).ADSGoogle Scholar
  13. 13.
    P. Nath and R. Arnowitt, Phys. Rev. D18, 2759 (1978).MathSciNetADSGoogle Scholar
  14. 14.
    J. G. Taylor, Proc. Roy. Soc. Lond. A 362, 493 (1978).ADSMATHCrossRefGoogle Scholar
  15. 16.
    R. Arnowitt and P. Nath, Phys. Rev. D13, 1033 (1977).MathSciNetADSGoogle Scholar
  16. 18.
    P. Nath and R. Arnowitt, Phys. Lett. 65B, 73 (1976).MathSciNetADSGoogle Scholar
  17. 20.
    R. Arnowitt and P. Nath, Nucl. Phys. B144, 363 (1978).ADSCrossRefGoogle Scholar
  18. 22.
    See survey by P. van Nieuwenhuizen and M. Grisaru in “Deeper Pathways in High Energy Physics;” A. Perlmutter and L.F. Scott, editors, Plenum Press, New York (1977).Google Scholar
  19. 23.
    S. Deser and J. H. Kay, Phys. Lett. 76B, 400 (1978).MathSciNetADSGoogle Scholar
  20. 24.
    P. Nath and R. Arnowitt, Phys. Rev. Letters, 42, 138 (1979).ADSCrossRefGoogle Scholar
  21. 25.
    S. Weinberg, Phys. Rev. 118, 838 (1960).MathSciNetADSMATHCrossRefGoogle Scholar
  22. 28.
    S. Hawking, Nuclear Phys. B144, 349 (1978).Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • R. Arnowitt
    • 1
  • Pran Nath
    • 1
  1. 1.Northeastern UniversityBostonUSA

Personalised recommendations