The Mononuclear Phagocyte System and Hemopoiesis

  • M. Rachmilewitz
  • B. Rachmilewitz
  • M. Chaouat
  • H. Zlotnik
  • M. Schlesinger
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 121B)


The in vitro’bone marrow culture technique developed in recent years and employed in extensive studies has demonstrated that mononuclear phagocytes originate in the bone marrow. The colony forming cells are the committed precursors common to the granulocytic and monocytic lines. The proliferation of the colony forming cells requires a substance or substances which possess colony stimulating activity (CSA). The principal cell in the peripheral blood responsible for the elaboration of colony stimulating activity is the monocyte (7). The close ancestral relationship between granulocytes and monocytes may explain the proliferation of both cell populations in the neoplastic process of myelomonocytic leukemia. The normal function of the monocyte is retained in cells of monocytic and myelomonocytic leukemia (9). The serum colony stimulating activity was found to correlate with the level of circulating monocytes (18). Monocyte-derived macrophages and tissue macrophages are also active producers of CSA (8). Since tissue macrophages retain their function during severe bone marrow failure, these cells may serve as a reservoir of production of CSA for restoration of granulopoiesis.


Bone Marrow Cell Peritoneal Cell Peritoneal Exudate Cell Mononuclear Phagocyte System Grand Island Biological 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, R. H. Brit. J. Haematol. 33 (1976) 161.CrossRefGoogle Scholar
  2. 2.
    Allen, H. R. and Magerus, P. W. J. Biol. Chem. 247 (1972) 7702.Google Scholar
  3. 3.
    Boyle, W. Transplantation 6 (1968) 761.PubMedCrossRefGoogle Scholar
  4. 4.
    England, J. M., Tavill, A. S. and Chanarin, I. Clin. Sci. Mol. Med. 45 (1973) 479.Google Scholar
  5. 5.
    Gilbert, H. S. and Weinreb, N. New Eng. J. Med. 295 (1976) 1096.Google Scholar
  6. 6.
    Gimpert, E., Jakob, M. and Hitzig, W. H. Blood 45 (1975) 71.Google Scholar
  7. 7.
    Golde, D. W. and Cline, M. J. J. Clin. Invest. 51 (1972) 2981.Google Scholar
  8. 8.
    Golde, D. W., Finley, T. N. and Cline, M. J. Lancet II (1972) 1397.Google Scholar
  9. 9.
    Golde, D. W., Rothman, B. and Cline, M. J. Blood 43 (1974) 749.Google Scholar
  10. 10.
    Gordon, S. and Cohn, Z. A. Int. Rev. Cytol. 36 (1973) 171.CrossRefGoogle Scholar
  11. 11.
    Gordon, S., Tood, J. and Cohn, Z. A. J. Exp. Med. 139 (1974) 1228.Google Scholar
  12. 12.
    Hakami, N., Neiman, P. E., Canellos, G. P. and Lazerson, J. New Eng. J. Med. 285 (1971) 1163.Google Scholar
  13. 13.
    Hitzig, W. H., Dohmann, U., Pluss, H. J. and Vischer, D. J. Pediat. 85 (1974) 622.PubMedCrossRefGoogle Scholar
  14. 14.
    Hoffbrand, A. V., Tripp, E. and Das, K. C. Brit. J. Haematol. 24 (1973) 147.CrossRefGoogle Scholar
  15. 15.
    Jacob, A. and Warwood, M. New Eng. J. Med. 292 (1975) 951.Google Scholar
  16. 16.
    Metcalf, D. Brit. J. Haematol. 16 (1969) 397.CrossRefGoogle Scholar
  17. 17.
    Meuret, G. and Hoffman, G. Brit. J. Haematol. 24 (1973) 275.CrossRefGoogle Scholar
  18. 18.
    Moore, M. A. S., Spitzer, G., Metcalf, D., et al. Brit. J. Haematol. 27 (1974) 47.CrossRefGoogle Scholar
  19. 19.
    Palmer, W. G. and Schuler, R. L. Biomedicine 25 (1976) 88.Google Scholar
  20. 20.
    Patinkin, D., Schlesinger, M. and Doljanski, F. Cancer Res. 30 (1970) 489.PubMedGoogle Scholar
  21. 21.
    Peschle, C., Mavone, G., Genovese, A., et al. Blood 47 (1976) 325.PubMedGoogle Scholar
  22. 22.
    Rachmilewitz, B. and Rechmilewitz, M. Isr. J. Med. Sci. 12 (1976) 583.Google Scholar
  23. 23.
    Rachmilewitz, B. and Rachmilewitz, M. New Eng. J. Med. 296 (1977) 1174.Google Scholar
  24. 24.
    Rachmilewitz, B., Rachmilewitz, M., Chaouat, M. and Schlesinger, M. Biomedicine 27 (1977) 213.PubMedGoogle Scholar
  25. 25.
    Rappazzo, M. E. and Hall, C. A. J. Clin. Invest. 51 (1972) 1915.Google Scholar
  26. 26.
    Retief, F. P., Gottlieb, C. W. and Herbert, V. J. Clin. Invest. 45 (1966) 1907.Google Scholar
  27. 27.
    Rosenberg, L. E., Lilljeqvist, A. and Allen, R. H. J. Clin. Invest. 52 (1973) 69a.Google Scholar
  28. 28.
    Ryel, E. M., Meyer, L. M. and Gams, R. A. Blood 44 (1974) 427.Google Scholar
  29. 29.
    Selhub, J., Rachmilewitz, M., Chaouat, M. and Schlesinger, M. Biomedicine 27 (1977) 213.Google Scholar
  30. 30.
    Sonneborn, D. W., Abouna, G. and Mendez-Picon, G. Biochim. Biophis. Acta 273 (1972) 283.CrossRefGoogle Scholar
  31. 31.
    Spector, W. G., Walters, M. N. I. and Willoughby, D. A. J. Path. Bact. 90 (1965) 181.CrossRefGoogle Scholar
  32. 32.
    Spector, W. G. and Willoughby, D. A. J. Path. Bact. 96 (1968) 389.CrossRefGoogle Scholar
  33. 33.
    Tan, C. H. and Blaisdell, S. J. Biochim. Biophis. Acta 444 (1976) 416.CrossRefGoogle Scholar
  34. 34.
    Tan, C. H. and Hansen, H. J. Proc. Soc. Exp. Biol. Med. 127 (1968) 740.Google Scholar
  35. 35.
    Van Furth, R. Sem. Hemat. 7 (1970) 125.Google Scholar
  36. 36.
    Van Furth, R. and Diessehoff-Den Dulk, M. M. C. J. Exp. Med. 132 (1970) 813.CrossRefGoogle Scholar
  37. 37.
    Whitelaw, D. M., Bell, M. F. and Batles, H. F. J. Cell Physiol. 72 (1968) 65.PubMedCrossRefGoogle Scholar
  38. 38.
    Zittoun, J., Zittoun, R., Marquet, J. and Sultan, C. Brit. Haematol. 31 (1975) 287.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • M. Rachmilewitz
    • 1
  • B. Rachmilewitz
    • 1
  • M. Chaouat
    • 1
  • H. Zlotnik
    • 1
  • M. Schlesinger
    • 1
  1. 1.Department of Experimental Medicine and Cancer ResearchThe Hebrew University-Hadassah Medical SchoolJerusalemIsrael

Personalised recommendations