The Purification of Plasma Membranes from Guinea Pig Peritoneal Macrophages

  • G. Chauvet
  • A. Anteunis
  • R. Robineaux
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 121B)


The plasma membrane undoubtedly plays an important role at the intracellular level as well as in the relationship of the cell with the surrounding environment. Therefore, it is of considerable interest to separate this membrane from other subcellular organelles before studying its specific function. The majority of mammalian cell membrane preparations described in the literature are generally obtained from organs, particularly the liver. Several authors have employed homogeneous cell suspensions (6). Nachman et al. (11) described a method for isolating plasma membranes from rabbit alveolar macrophages. It is known that macrophages participate in the defense of the organism, e.g. in inflammatory processes and in immune responses. The participation of the cell membrane in these biological phenomena is often recognized but ill-defined. Since we are interested in macrophage surface receptors, it is of great importance to work with purified membrane preparations. So we decided to initially develop a technique for the fractionation of guinea pig peritoneal macrophages, modifying the experimental procedure of Nachman et al. (11).


Acid Phosphatase Sucrose Gradient Acid Phosphatase Activity Plasma Membrane Fraction Dounce Homogenizer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anteunis, A., Robineaux, R., Bona, C. and Bernier, A., Ann. Inst. Pasteur 123 (1972) 69.Google Scholar
  2. 2.
    Baudhuin, P., Evrard, Ph. and Berthet, J., J. Cell Biol. 32 (1967) 181.PubMedCrossRefGoogle Scholar
  3. 3.
    Beaufay, H., Bendall, D. S., Baudhuin, P., Wattiaux, R. and de Duve, C., J. Biochem. 73 (1959) 628.Google Scholar
  4. 4.
    Burton, K., J. Biochem. 62 (1956) 315.Google Scholar
  5. 5.
    de Duve, C., J. Cell Biol. 50 (1971) 20D.PubMedCrossRefGoogle Scholar
  6. 6.
    De Pierre, J. W., and Karnovsky, m. L., J. Cell Biol. 56 (1973) 275.CrossRefGoogle Scholar
  7. 7.
    Emmelot, P., Bos, C. J., Bennedetti, E. L. and Riimke, Ph., Biochim. Biophys. Acta 90 (1964) 126.CrossRefGoogle Scholar
  8. 8.
    Ernster, L. and Jones, L. C., J. Cell Biol. 15 (1962) 563.PubMedCrossRefGoogle Scholar
  9. 9.
    Green, D. E., Mii, S. and Kohout, P. M., J. Biol. Chem. 217 (1955) 55.Google Scholar
  10. 10.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., J. Biol. Chem. 193 (1951) 265.PubMedGoogle Scholar
  11. 11.
    Nachman, R. L., Ferris, B. and Hirsch, J. G., J. Exp. Med. 133 (1971) 785.PubMedCrossRefGoogle Scholar
  12. 12.
    Robineaux, R., Anteunis, A. and Bona, C., Ann. Inst. Pasteur 120 (1971) 329.Google Scholar
  13. 13.
    Thinès-Sempoux, D., Wibo, M. and Amar-Costesec, A., Arch. Int. Physiol. Biochim, 78 (1970) 1012.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • G. Chauvet
    • 1
  • A. Anteunis
    • 1
  • R. Robineaux
    • 1
  1. 1.Centre de Physiologie et d’Immunologie CellulairesINSERM U.104, CNRS and Ass.Cl.Bernard, Hôp. St-AntoineParisFrance

Personalised recommendations