Biophysical Spectroscopy in the Visible and Ultraviolet Using Synchrotron Radiation

  • John Clark Sutherland
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 25)


Spectroscopy in the ultraviolet and visible regions of the electromagnetic spectrum is extremely important in the study of biological materials. These lectures consider the applications of synchrotron radiation (SR) to these regions. They are limited to measurements which do not make use of the time structure inherent in SR. Comparisons of SR with conventional sources suggests that the greatest improvements will be realized in the far and vacuum ultraviolet regions -- wavelengths less than about 300 nm. Consideration of the transitions of the valence electrons of most organic and biologically important materials indicate that wavelengths less than about 120 nm will not be especially informative in studies of the structure and function of biological materials (although they are important for understanding the interactions between these materials and high energy electrons). In addition, spectroscopic experiments at wavelengths less than 105 nm become more difficult because of the loss of window materials and surfaces with high normal incidence reflectance. The characteristic visible and ultraviolet absorption bands of proteins, nucleic acids and sugars are reviewed. Important spectroscopic techniques such as absorption, natural and magnetic circular dichroism, fluorescence and various fluorescence polarization spectroscopies are described and their potential use in the far and vacuum ultraviolet (120–300 nm) using synchrotron sources is discussed.


Circular Dichroism Synchrotron Radiation Absorption Spectroscopy Aromatic Amino Acid Storage Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Oriel Corporation, 1975 Catalog, Stamford, Connecticut, U.S.Google Scholar
  2. 2.
    Samson, J. A. R. (1967) Techniques of Vacuum Ultraviolet Spectroscopy. John Wiley and Sons, New York, New York, U.S.Google Scholar
  3. 3.
    Optical Crystals, Harshaw Chemical Company, Solon, Ohio, U.S.Google Scholar
  4. 4.
    Product Data Bulletin 210, Acton Research Corporation, Acton, Massachusetts, U.S.Google Scholar
  5. 5.
    Bramston-Cook, R. and Erickson, J. O. (1973) Far-Ultraviolet Spectroscopy Instrumentation and Applications. Varian Instrument Applications, 7(3), 5–7.Google Scholar
  6. 6.
    Robin, M. B. (1974) Higher Excited States of Polyatomic Molecules. Vols. 1 and 2. Academic Press, New York, New York, U.S.Google Scholar
  7. 7.
    Sutherland, J. C., Cimino, G. D. and Lowe, J. T. (1976) Emission and polarization spectrometer for biophysical spectroscopy. Rev. Sci. Instrum., 47, 358–360.ADSCrossRefGoogle Scholar
  8. 8.
    Sutherland, J. C. and Low, H. (1976) Fluorescence-detected magnetic circular dichroism of fluorescent and nonfluorescent molecules. Proc. Nat. Acad. Sci. U.S.A., 72, 276–280.ADSCrossRefGoogle Scholar
  9. 9.
    Sutherland, J. C., Cimino, G. D. and Lowe, J. T. (1976) Magnetic circularly polarized fluorescence of tetraphenylporphyrin. In Excited States of Biological Molecules, (J. Birks, ed.), pp. 28–33. John Wiley and Sons, New York, New York, U.S.Google Scholar
  10. 10.
    Latimer, P. and Eubanks, C. A. H. (1962) Absorption spectrophotometry of turbid suspensions: A method of correcting for large systematic distortions. Arch. Biochem. Biophys., 98, 274–285.CrossRefGoogle Scholar
  11. 11.
    Butler, W. L. (1972) Absorption spectroscopy of biological materials. Meth. Enzymol., 27, 3–25.CrossRefGoogle Scholar
  12. 12.
    Dorman, B. P., Hearst, J. E. and Maestre, M. F. (1973) UV absorption and circular dichroism measurements on light scattering biological specimens; fluorescent cell and related large-angle light detection technique. Meth. Enzymol., 27D, 767.CrossRefGoogle Scholar
  13. 13.
    Fasman, G. D. (1978) Circular dichroism analysis of chromatin and DNA-nuclear protein complexes. Meth. Cell Biol., 18 327–349.CrossRefGoogle Scholar
  14. 14.
    Johnson, W. C. and Tinoco, I. (1972) Circular dichroism of polypeptide solutions in the vacuum ultraviolet. J. Am. Chem. Soc., 94 4389–4390.CrossRefGoogle Scholar
  15. 15.
    Preiss, J. W. and Setlow, R. (1955) Spectra of some amino acids, peptides, nucleic acids and protein in the vacuum ultraviolet. J. Chem. Phys., 25 138–141.ADSCrossRefGoogle Scholar
  16. 16.
    Yamada, T. and Fukutome, H. (1968) Vacuum ultraviolet absorption spectra of sublimed films of nucleic acid bases. Biopolymers, 6 43–54.CrossRefGoogle Scholar
  17. 17.
    Inagaki, T., Hamm, R. N., Arakawa, E. T. and Painter, L. R. (1974) Optical and dielectric properties of DNA in the extreme ultraviolet. J. Chem. Phys., 61 4246–4250.ADSCrossRefGoogle Scholar
  18. 18.
    Emerson, L. C., Williams, M. W., Tang, I., Hamm, R. N. and Arakawa, E. T. (1975) Optical properties of guanine from 2 to 82 eV. Radiat. Res., 63 235–244.CrossRefGoogle Scholar
  19. 19.
    Inagaki, T., Hamm, R. N., Arakawa, E. T. and Birkhoff, R. D. (1975) Optical properties of bovine plasma albumin between 2 and 80 eV. Biopolymers, 14 839–847.CrossRefGoogle Scholar
  20. 20.
    Williams, M. W., Arakawa, E. T., Birkhoff, R. D., Hamm, R. N., Schweinler, H. C. and MacRae, R. A. (1975) Optical properties of chloroplasts and red blood cells in the vacuum uv. Radiat. Res., 61 185–190.CrossRefGoogle Scholar
  21. 21.
    Goldford, A., Saidel, L. and Mosovich, E. (1951) The ultraviolet absorption spectra of proteins. J. Biol. Chem. 193, 397–404.Google Scholar
  22. 22.
    Setlow, R. B. and Guild, W. R. (1951) The spectrum of the peptide bond and other substances below 230 nm. Arch. Biochem. Biophys., 34 223–225.CrossRefGoogle Scholar
  23. 23.
    Ham, J. and Platt, J. (1952) Far u.v. spectra of peptides. J. Chem. Phys., 20 335–336.ADSCrossRefGoogle Scholar
  24. 24.
    Wetlaufer, D. B. (1962) Ultraviolet Spectra of Proteins and Amino Acids. In Advances in Protein Chemistry, (C. B. Anfinsen, Jr., M. L. Anson, K. Bailey and J. T. Edsall, eds.), Vol. 17, pp. 303–390. Academic Press, New York, New York, U.S.Google Scholar
  25. 25.
    Setlow, R. B. and Pollard, E. C. (1962) Molecular Biophysics, Addison-Wesley.Google Scholar
  26. 26.
    Rosencwaig, A. (1975) Photoacoustic spectroscopy: A new tool for investigation of solids. Analyt. Chem., 47, 592A.CrossRefGoogle Scholar
  27. 27.
    Jirgensons, B. (1973) Optical Activity of Proteins and Other Macromolecules. Springer-Verlag, New York, New York, U.S.CrossRefGoogle Scholar
  28. 28.
    VanHolde, K. E. (1971) Physical Biochemistry, Chapt. 10. Prentice-Hall Inc., Englewood Cliffs, New Jersey, U.S.Google Scholar
  29. 29.
    Bloomfield, V. A. Crothers, D. M. and Tinoco, I. (1974) Physical Chemistry of Nucleic Acids. Harper and Row, New York, New York, U.S.Google Scholar
  30. 30.
    Pysh, E. S. (1976) Optical activity in the vacuum ultraviolet. Ann. Rev. Biophys. Bioengr., 5 63–75.CrossRefGoogle Scholar
  31. 31.
    Johnson, W. C. Jr. (1978) Circular dichroism spectroscopy and the vacuum ultraviolet region. Ann. Rev. Phys. Chem. (in press).Google Scholar
  32. 32.
    Djerassi, C., Bunnenberg, E. and Elder, D. L. (1971) Organic chemical applications of magnetic circular dichroism. Pure and Appl. Chem., 25 57–90.CrossRefGoogle Scholar
  33. 33.
    Holmquist, B. and Vallee, B. L. (1978) Magnetic circular dichroism. Meth. Enzymol., 49 149–178.CrossRefGoogle Scholar
  34. 34.
    Sutherland, J. C. (1978) The magnetic optical activity of porphyrins. In The Porphyrins, (D. Dalton, ed.), Vol. 3. Academic Press, New York, New York, U.S. (in press).Google Scholar
  35. 35.
    Velluz, L., Legrand, M. and Grosjean, M. (1965) Optical Circular Dichroism. Academic Press, New York, New York, U.S.Google Scholar
  36. 36.
    Sutherland, J. C. and Klein, M. P. (1972) Magnetic circular dichroism of cytochrome c. J. Chem. Phys., 57 76–86.ADSCrossRefGoogle Scholar
  37. 37.
    Stevens, E. S. (1978) Far (vacuum) ultraviolet circular dichroism. Meth. Enzymol., 49 214–221.CrossRefGoogle Scholar
  38. 38.
    Eaton, W. A., Hanson, L. K., Stephens, P. J., Sutherland, J. C. and Dunn, J. B. R. (1978) The optical spectra of oxy-and deoxyhemoglobin. J. Am. Chem. Soc, 100 4991–5003.CrossRefGoogle Scholar
  39. 39.
    Perutz, M. F., Heidner, E. J., Ladner, J. E., Beetlestone, J. G., Ho, C. and Slade, E. F. (1974) Influence of globin structure on the state of the heme. III. Changes in heme spectra accompanying allosteric transitions in methemoglobin and their implications for heme-heme interaction. Biochemistry, 13 2187–2200.Google Scholar
  40. 40.
    Greenfield, N. J. and Fasman, G. D. (1969) Computed circular dichroism spectra for evaluation of protein conformation. Biochemistry, 8 4108–4116.CrossRefGoogle Scholar
  41. 41.
    Billardon, M. and Badoz, J. (1966) (a) Modulateur de Birefrigence. C. R. Acad. Sci., 262, 1672–1675.Google Scholar
  42. Billardon, M. and Badoz, J. (1966) (b) Mesure des variations d’indice de réfraction en region d’absorption par une méthode polarimetrique. C. R. Acad. Sci., 263 26–29.Google Scholar
  43. 42.
    Kemp, J. C. (1969) Piezo-optical birefringence modulators: New use for a long-known effect. J. Opt. Soc. Am., 59 950–954.ADSGoogle Scholar
  44. 43.
    Mollenauer, L. F., Downie, D., Engstrom, H. and Grant, W. B. (1969) Stress plate optical modulator for circular dichroism measurements. Appl. Opt., 8 661–665.ADSCrossRefGoogle Scholar
  45. 44.
    Jasperson, J. N. and Schnatterly, S. E. (1969) An improved method for high reflectivity ellipsometry based on a new polarization modulation technique. Rev. Sci. Instrum., 40 761–767.ADSCrossRefGoogle Scholar
  46. 45.
    Breeze, R. H. and Ke, B. (1972) A circular dichroism spectrophotometer using an elasto-optic modulator. Anal. Biochem., 50 281–303.CrossRefGoogle Scholar
  47. 46.
    Wells, B. D. and Yang, J. T. (1974) A computer probe of the circular dichroic bands of nucleic acids in the ultraviolet region. I. Transfer ribonucleic acid. Biochemistry, 13 1311–1316.Google Scholar
  48. 47.
    Wells, B. D. and Yang, J. T. (1974) A computer probe of the circular dichroic bands of nucleic acids in the ultraviolet region. II. Double-stranded, ribonucleic acid and deoxyribonucleic acid. Biochemistry, 13 1317–1321.Google Scholar
  49. 48.
    Li, H. J., Isenberg, I. and Johnson, W. C. (1971) Absorption and circular dichroism studies on nucleohistone IV. Biochemistry, 10 2587–2593.CrossRefGoogle Scholar
  50. 49.
    Lewis, D. G. and Johnson, W. C. (1974) Circular dichroism of DNA in the vacuum ultraviolet. J. Mol. Biol., 86 91–96.CrossRefGoogle Scholar
  51. 50.
    Sprecher, C. A. and Johnson, W. C. (1977) Circular dichroism of the nucleic acid monomers. Biopolymers, 16 2243–2264.CrossRefGoogle Scholar
  52. 51.
    Steiner, R. F., and Weinryb, I. (1971) Excited States of Proteins and Nucleic Acids. Plenum Press, New York, New York, U.S.CrossRefGoogle Scholar
  53. 52.
    Lamola, A. A. and Turro, N. J. (1977) Chapter 2. In The Science of Photobiology, (K. C. Smith, ed.), pp. 27–61. Plenum Press, New York, New York, U.S.CrossRefGoogle Scholar
  54. 53.
    Teale, F. W. J. and Weber, G. (1957) Ultraviolet fluorescence of the aromatic amino acids. Biochem. J., 65 476–482.Google Scholar
  55. 54.
    Yeargers, E. and Augenstein, L. (1968) Vacuum ultraviolet studies on the nature of the radiation inactivation of trypsin. Biophys. J., 8 500–509.ADSCrossRefGoogle Scholar
  56. 55.
    For a review of measurements of the linear polarization of fluorescence see J. W. Longworth’s article in ref. 51.Google Scholar
  57. 56.
    Steinberg, I. Z. (1978) Circularly polarized luminescence. Meth. Enzymol., 49 179–199.CrossRefGoogle Scholar
  58. 57.
    Turner, D. H. (1978) Fluorescence detected circular dichroism. Meth. Enzymol., 49 199–214.CrossRefGoogle Scholar
  59. 58.
    Turner, D. H., Tinoco, I. and Maestre, M. (1974) Fluorescence detected circular dichroism. J. Am. Chem. Soc., 96 4340–4342.CrossRefGoogle Scholar
  60. 59.
    Turner, D. H., Tinoco, I. and Maestre, M. F. (1975) Fluorescence detected circular dichroism study of the anticodon loop of yeast tRNAPhe · Biochemistry, 14, 3794–3799.CrossRefGoogle Scholar
  61. 60.
    Bayley, P. M. and Anson, M. (1974) Stopped-flow circular dichroism: A new fast-kinetic system. Biopolymers, 13 401–405.CrossRefGoogle Scholar
  62. 61.
    Ferrone, F. A., Hopfield, J. J. and Schnatterly, S. E. (1974) The measurement of transient circular dichroism: A new kinetic technique. Rev. Sci. Instrum., 45 1392–1396.CrossRefGoogle Scholar
  63. 62.
    Tsuda, M. (1975) Apparatus for rapid measurement of optical rotation changes. Rev. Sci. Instrum., 46 1419–1420.ADSCrossRefGoogle Scholar
  64. 63.
    Goodall, D. M. and Cross, M. T. (1975) Polarimetric stopped-flow apparatus. Rev. Sci. Instrum., 46 391–397.ADSCrossRefGoogle Scholar
  65. 64.
    Anson, M., Martin, S. R. and Bayley, P. M. (1977) Transient CD measurements at submillisecond time resolution application to studies of temperature-jump relaxation of equilibria of chiral biomolecules. Rev. Sci. Instrum., 48 953–962.ADSCrossRefGoogle Scholar
  66. 65.
    Gruenewald, B. and Knoche, W. (1978) Pressure jump method with detection of optical rotation and circular dichroism. Rev. Sci. Instrum., 49 797–801.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • John Clark Sutherland
    • 1
  1. 1.Biology DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations