VUV Monochromators at Synchrotron Radiation Sources

  • Volker Saile
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 25)


Synchrotron Radiation (SR) with its intense continuum from the infrared up to photon energies of some ten keV is an extremely versatile tool for various kinds of spectroscopy, structure analysis and a number of other applications in physics, chemistry, biology and technology1,2. Interest in synchrotron radiation sources has led to a rapid increase in the number of radiation laboratories and to a worldwide demand for storage rings dedicated exclusively to the generation of synchrotron radiation3,4.


Synchrotron Radiation Storage Ring Grazing Angle Entrance Slit Synchrotron Radiation Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vacuum Ultraviolet Radiation Physics, ed by E.E. Koch, R. Haensel and C. Kunz (Pergamon-Vieweg, Braunschweig, 1974).Google Scholar
  2. 2.
    V th Int.Conf. on Vacuum Ultraviolet Radiation Physics, Extended Abstracts, ed. by M. Castex, M. Pouey and N. Pouey (Montpellier, Sept. 5-9, 1977).Google Scholar
  3. 3.
    An Assessment of the National Need for Facilities Dedicated to the Production of Synchrotron Radiation (Solid State Sciences Committee, Assembly of Mathematical and Physical Sciences, National Research Council, Washington, 1976).Google Scholar
  4. 4.
    Synchrotron Radiation a Perspective View for Europe, prepared by ESF (European Science Foundation, Strasbourg, France 1978).Google Scholar
  5. 5.a)
    J.A.R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy. (Wiley and Sons, New York 1976)Google Scholar
  6. b).
    A.N. Zaidel’ and E.Y. Shreider, Vacuum Ultraviolet Spectroscopy, (Ann Arbor-Humphrey Science Publishers, Ann Arbor, London, 1970)Google Scholar
  7. 6.
    G. Schmahl, D. Rudolph and B. Niemann in Ref. 2, Vol. III, p. 40.Google Scholar
  8. 7.
    E. Spiller and R. Feder, X-Ray Lithography, in Topics in Appl. Physics. Vol. 22, ed. H.J. Queisser (Springer Verlag, Berlin, Heidelberg, New York, 1977).Google Scholar
  9. W. Gudat in Ref. 11, p. 279.Google Scholar
  10. 8.
    D. Einfeld, D. Stuck and B. Wende in Ref. 2, Vol. III, p. 114; R.P. Madden in Ref. 2, Vol. III, p. 120; E. Pitz and A. Schulz in Ref. 11, p. 243.Google Scholar
  11. 9.
    H.J. Hagemann, W. Gudat and C. Kunz, J.Opt. Soc.Am. 65, 742 (1975).ADSCrossRefGoogle Scholar
  12. R.P. Haelbich, M. Iwan and E.E. Koch, Optical Properties of Some Insulators in the Vacuum Ultraviolet Region Physik Daten, Physics Data ZAED, Karlsruhe, Germany, Vol. 8-1 (1977).Google Scholar
  13. 10.
    Several contributions in Ref. 1, 2, 11.Google Scholar
  14. 11.
    Proc. Intern. Conf. on Synchrotron Radiation Instrumentation and New Developments, ed. by F. Wuilleumier and Y. Farge, Special issue of Nuclear Instruments and Methods 152 (1978).Google Scholar
  15. 12.
    Synchrotron Radiation, ed. by C. Kunz, Topics in Current Physics (Springer-Verlag, Berlin, Heidelberg, New York, in press).Google Scholar
  16. 13.
    P.M. Guyon, C. Depautex and G. Morel, Rev. Sci.Instr. 47, 1347 (1976).ADSCrossRefGoogle Scholar
  17. 14.
    E.E. Koch, C. Kunz and E.W. Weiner, Optik 45, 395 (1976).Google Scholar
  18. 15.
    C. Kunz, Phys. B1. 32, 9 (1976).Google Scholar
  19. 16.
    C. Kunz in Ref. 1, p. 753.Google Scholar
  20. 17.
    A more detailed dicussion is found in Chap. I of Ref. 12.Google Scholar
  21. 18.
    F.C. Brown, R.Z. Bachrach and N. Lien in Ref. 11, p. 73.Google Scholar
  22. 19.
    U. Backhaus, Diplomarbeit Universität Hamburg, 1973; calculated with the optical constants given by K. Platzöder, Diplomarbeit Universität München, 1967.Google Scholar
  23. 20.
    A.P. Lukirskii, E.P. Savinov, O.A. Ershov, V.A. Fomichev and I.I. Zhukova, Opt. Spectrosc. 19, 237 (1965).ADSGoogle Scholar
  24. 21.
    R.Z. Bachrach, S.A. Flodstrom, R. S. Bauer, V. Rehn and V.O. Jones in Ref. 11, p. 135.Google Scholar
  25. 22.
    V. Rehn, A.D. Baer, J.L. Stanford, D.S. Kyser and V.O. Jones in Ref. 1, p. 780.Google Scholar
  26. 23.
    J.L. Stanford, V. Rehn, D.S. Kyser and V.O. Jones in Ref. 1, p. 783.Google Scholar
  27. 24.
    B. Niemann, private communication.Google Scholar
  28. 25.
    V. Rehn, J.L. Stanford, V.O. Jones and W.J. Chyoke, Proc. Int. Conf. on Physics of Semiconductors, Rome, August 1976, p. 985.Google Scholar
  29. V. Rehn, J.L. Stanford, A.D. Baer, V.O. Jones and W.J. Chyoke, Appl.Opt. 16, 1111 (1977).ADSCrossRefGoogle Scholar
  30. feasibility of SiC for gratings is discussed in W.J. Chyoke, W.D. Partlow, E.P. Supertzi, F.J. Venskytis and G.B. Brandt, Appl.Opt. 16, 2013 (1977).ADSCrossRefGoogle Scholar
  31. 26.
    R.P. Haelbich and C. Kunz, Optics Commun. 17, 287 (1976).ADSCrossRefGoogle Scholar
  32. 27.
    G.W. Stroke, Encyclopedia of Physics, Vol. XXIX, ed. by S. Flügge (Springer-Verlag, Berlin, Heidelberg, New York, 1967), p. 426.Google Scholar
  33. 27.
    G.W. Stroke, Diffraction Grating Handbook, ed. Bausch and Lomb Inc. (Rochester, New York, II. edition 1972).Google Scholar
  34. 28.
    H.A. Rowland, Phil.Mag. 16, 197 and 210 (1883).Google Scholar
  35. 29.
    V. Saile in Ref. 11, p. 59.Google Scholar
  36. 30.
    V. Saile, P. Gürtler, E.E. Koch, A. Kozevnikov, M. Skibowski and W. Steinmann, Appl.Opt. 15, 2559 (1976).ADSCrossRefGoogle Scholar
  37. 31.
    G. Schmahl in Ref. 1, p. 667.Google Scholar
  38. 32.
    Diffraction Gratings Ruled and Holographic — Handbook, ed. Jobin-Yvon Company (Longjumeau, France, 1976).Google Scholar
  39. 33.
    H. Noda, T. Namioka and M. Seya, J.Opt.Soc.Am. 64, 1031 (1974).ADSCrossRefGoogle Scholar
  40. 34.
    J.A. Dijkstra and L.J. Lantwaard, Opt.Commun. 15, 300 (1975).ADSCrossRefGoogle Scholar
  41. 35.
    S.A. Flodstrom and R.Z. Bachrach, Rev. Sci.Instr. 47, 1464 (1976).ADSCrossRefGoogle Scholar
  42. 36.
    E. Källne, H.W. Schopper, J.P. Delvaille, L.P. van Speybroeck and R.Z. Bachrach in Ref. 11, p. 103.Google Scholar
  43. 37.
    J. Stöhr, V. Rehn, I. Lindau and R.Z. Bachrach in Ref. 11, p. 44.Google Scholar
  44. 38.
    D.J. Bradley, M.H.R. Hutchinson and C.C. Ling, Tunable Lasers and Applications, ed. by A. Mooradian, T. Jaeger and P. Stokseth, Proc. of the Loen Conf. Norway, 1976 (Springer-Verlag, Berlin, Heidelberg, New York, 1976) p. 40.Google Scholar
  45. 39.
    P.P. Sorokin, J.A. Amstrong, R.W. Dreyfus, R.T. Hodgson, J.R. Lankard, L.H. Manganaro and J.J. Wynne, Laser Spectroscopy, ed. by S. Haroche, J.C. Pebay-Peyroula, T.W. Hänsch and S.E. Harris, Proc. II. Int.Conf., Megève, 1975 (Springer-Verlag, Berlin, Heidelberg, New York (1975)).Google Scholar
  46. 40.
    Physics Today, Dec. 1976, p. 17.Google Scholar
  47. 41.
    E.E. Koch, Interaction of radiation with condensed matter, Vol. II, L.A. Self (editor), publication of the Trieste Center for Theoretical Physics Int.Atomic Energy Agency, Wien 1976, p. 225.Google Scholar
  48. 42.
    K. Radler, private communication.Google Scholar
  49. 43.
    W. Gudat and C. Kunz, Chapter 3 in Ref. 12.Google Scholar
  50. 44.
    V. Saile, Thesis, Universität München, 1976.Google Scholar
  51. 45.
    V. Saile, M. Skibowski, W. Steinmann, P. Gürtler, E.E. Koch and A. Kozevnikov, Phys.Rev.Lett. 37, 305 (1976).ADSCrossRefGoogle Scholar
  52. 46.
    W.B. Peatman, B. Gotchev, P. Gürtler, E.E. Koch and V. Saile, J.Chem.Phys. (in press).Google Scholar
  53. 47.
    M. Seya, Sci. Light 2, 8 (1952).Google Scholar
  54. T. Namioka, Sci. Light 3, 15 (1954).Google Scholar
  55. T. Namioka J.Opt.Soc.Am. 49, 951 (1959).MathSciNetADSCrossRefGoogle Scholar
  56. 48.
    N. Rehfeld, U. Gerhardt and E. Dietz, Appl.Phys. 1, 229 (1973).ADSCrossRefGoogle Scholar
  57. 49.
    H. Noda, T. Namioka and M. Seya, J.Opt.Soc.Am. 64, 1043 (1974).ADSCrossRefGoogle Scholar
  58. 50.
    M. Skibowski and W. Steinmann, J.Opt.Soc.Am. 57, 112 (1967).CrossRefGoogle Scholar
  59. 51.
    E.E. Koch, Thesis, Universität München, 1972.Google Scholar
  60. 52.
    C. Depautex, M. Lavollee, G. Jezequel, J.-C. Lemonnier and J. Thomas in Ref. 11, p. 69.Google Scholar
  61. 53.
    U. Hahn, N. Schwentner and G. Zimmerer in Ref. 11, p. 261.Google Scholar
  62. 54.
    U. Hahn, Thesis, Universität Hamburg, 1978.Google Scholar
  63. 55.
    U. Hahn and N. Schwentner, in preparation.Google Scholar
  64. 56.
    M. Lavollee and S. Robin, J.Opt.Soc.Am. 64, 319 (1974).ADSCrossRefGoogle Scholar
  65. 57.
    C.H.F. Velzel, J.Opt.Soc.Am. 68, 38 (1978).ADSCrossRefGoogle Scholar
  66. 58.
    M. Pouey, Some Aspects of Vacuum Ultraviolet Radiation Physics, ed. by N. Damany, J. Romand and B. Vodar (Pergamon Press, Oxford, 1974) Chapter 9.Google Scholar
  67. 59.
    M. Pouey in Ref. 1, p. 728.Google Scholar
  68. 60.
    C. Kunz, Proc. Intern. Symposium for Synchrotron Radiation Users, ed. by G.V. Marr and I.H. Munro (Daresbury Nucl.Phys.Lab. Report DNPL:R26, 1973) p. 68.Google Scholar
  69. 61.
    E.E. Koch, Problems of Elementary Particle Physics, Proc. of the 8th All Union School of High Energy Particle Physics (Yerevan, 1975), p. 502.Google Scholar
  70. 62.
    K. Thimm, J. Electr. Spectr. Rel. Phenom. 5, 755 (1974).CrossRefGoogle Scholar
  71. 63.
    R. Haensel and C. Kunz, Z. Angew. Physik 23, 276 (1967).Google Scholar
  72. 64.
    K. Codling and P. Mitchell, J.Phys. E3, 685 (1970).ADSGoogle Scholar
  73. 65.
    P. Jaeglé, P. Dhez and F. Wuilleumier, Rev.Sci.Instrum. 48, 978 (1977).ADSCrossRefGoogle Scholar
  74. P. Dhez, P. Jaeglé, F.J. Wuilleumier, E. Källne, V. Schmidt, M. Berland and A. Carillon in Ref. 11, p. 85.Google Scholar
  75. 66.
    C.H. Pruett, N.C. Lien and S.D. Steben, III. Int. Conf. on Vacuum Ultraviolet Radiation Physics, Tokyo 1971, 31a A2–5.Google Scholar
  76. 67.
    G. Puester and K. Thimm in Ref. 11, p. 95; K. Thimm see Ref. 62.Google Scholar
  77. 68.
    F.C. Brown, R.Z. Bachrach, S.B.M. Hagström, N. Lien and C.H. Pruett in Ref. 1, p. 785.Google Scholar
  78. 69.
    M. Salle and B. Vodar, C.R. Acad.Sci. Paris 230, 380 (1950).Google Scholar
  79. 70.
    A design with the Rowland circle rotating around the grating has been realized by H. Sugawara and T. Sagawa in Ref. 1, p. 790.Google Scholar
  80. 71.
    F.C. Brown, R.Z. Bachrach and A. Bianconi, Chem.Phys.Lett. 54, 425 (1978).ADSCrossRefGoogle Scholar
  81. 72.
    J. Römer, Diplomarbeit, Universität Hamburg, 1970.Google Scholar
  82. 73.
    K.P. Miyake, R. Kato and H. Yamashita, Sci. Light 18, 39 (1969).Google Scholar
  83. 74.
    J.B. West, K. Codling and G.V. Marr, J.Phys. E7, 137 (1974).ADSGoogle Scholar
  84. M.R. Howells, D. Norman, G.P. Williams and J.B. West, J.Phys. E11 199 (1978).ADSGoogle Scholar
  85. 75.
    C. Kunz, R. Haensel and B. Sonntag, J.Opt. Soc.Am. 58, 1415 (1968).CrossRefGoogle Scholar
  86. H. Dietrich and C. Kunz, Rev. Sci.Instrum. 43, 434 (1972).ADSCrossRefGoogle Scholar
  87. 76.
    W. Eberhardt, G. Kalkoffen and C. Kunz in Ref. 11, p. 81; W. Eberhardt, Thesis, Universität Hamburg, 1978.Google Scholar
  88. 77.
    A monochromator based on a toroidal grating ruled mechanically has been realized by R.P. Madden and D.L. Ederer, J.Opt.Soc.Am. 62, 722 (1972).Google Scholar
  89. 78.
    Y. Petroff, P. Thiry, R. Pinchaux and D. Lepere in Ref. 2, Vol. III, p. 70.Google Scholar
  90. D.
    Depautex, P. Thiry, R. Pinchaux, Y. Petroff, D. Lepere, G. Passereau and J. Flamand in Ref. 11, p. 101.Google Scholar
  91. 79.
    E. Spiller, Workshop on X-Ray Instrumentation for Synchrotron Radiation Research, ed. by H. Winick and G. Brown, SSRL Report No. 78/04 (May 1978).Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Volker Saile
    • 1
  1. 1.Sektion PhysikUniversität MünchenMünchen 40Germany

Personalised recommendations