Protein Crystallography with Synchrotron Radiation I. General Discussion and High Resolution Data Collection

  • R. Fourme
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 25)


I will discuss in these lectures the present and possible applications of X-synchrotron radiation to protein crystallography. Basic underlying physics can be briefly summarised: when X-radiation impinges on a free electron, the electron is forced into oscillations of the same frequency as the incident wave and scatters radiation. Scattered rays have the same wavelength as the incident radiation and a definite phase relationship to the incident beam; hence, scattering is coherent. The scattering pattern of the electrons in the sample is the Fourier transform of the electron density. If the sample is a single crystal — e.g. a periodic three-dimensional array of scatterers — the Fourier transform is a weighted lattice; the discrete values of the transform are called structure factors F(hk1). Except for centric zones, structure factors are complex numbers because protein structures are not centrosymmetric. Usual detectors record the intensities of diffracted rays, which are proportional to |F(hk1)|2 = F(hkl).F*(hk1). In this process, the phases of structure factors are lost; this information has to be recovered by indirect ways from the magnitudes of scattered amplitudes only. Then the data can be back Fourier transformed to obtain the electron density in the crystal; finally, from this map and from the aminoacid sequence, the tertiary structure of the protein is derived.


Synchrotron Radiation Storage Ring Synchrotron Radiation Source Linear Absorption Coefficient Angular Aperture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arndt U.W. (1978) Nucl. Instr. and Meth., 152, 307.ADSCrossRefGoogle Scholar
  2. Arndt U.W. and Ambrose B.K. (1968) IEEE Trans. Nucl. Sci., NS15: Nb3, 9.Google Scholar
  3. Barrington-Leigh J. and Rosenbaum G. (1976) Ann. Rev. Biophys. and Bioeng., 5, 239.CrossRefGoogle Scholar
  4. Bartunik H.D. (1978) (to be submitted to Acta Cryst.Google Scholar
  5. A).
    Baru S.E., Proviz G.I., Savinov G.A., Sidorov V.A., Feldman J.G. and Khabakhpashev A.G. (1978) Nucl. Instr. and Meth., 152, 195.ADSCrossRefGoogle Scholar
  6. Berthou J., Rérat C., Rérat B., Gadet A., Fourme R., Renaud M., Dubord C., Pradel L.A., Roustan D. and Thoai N.V. (1975) J. Mol. Biol., 95, 331.CrossRefGoogle Scholar
  7. Blake C.C.F. and Evans P.R. (1974) J. Mol. Biol., 84, 585.CrossRefGoogle Scholar
  8. Blow D.M. (1958) Proc. Roy. Soc., A247, 302.ADSGoogle Scholar
  9. Blow D.M. and Rossmann M.G. (1961) Acta Cryst., 14, 1195.CrossRefGoogle Scholar
  10. Charpak G., Hajduk Z., Jeavons A.P., Kahn R. and Stubbs R.J. (1974) Nucl. Instr. and Meth., 122, 1307.CrossRefGoogle Scholar
  11. Charpak G., Demierre C., Kahn R., Santiard J.C. and Sauli F. (1977) IEEE Trans. Nucl. Sci. 24(1), 200.ADSCrossRefGoogle Scholar
  12. Charpak G. Sauli F. and Kahn R. (1978) Nucl. Instr. and Meth., 122, 185.Google Scholar
  13. Cork C., Fehr D., Hamlin R., Vernon W. and Xuong N.H. (1973) J. Appl. Cryst., 7, 319.CrossRefGoogle Scholar
  14. Cork C., Hamlin R., Vernon W. and Xuong N.H. (1975) Acta Cryst., A31, 702.Google Scholar
  15. Fourme R., Gadet A., Kahn R., André D., Janin J. and Risler J.L. (1977) European Congress of Crystallography, Oxford, UK and LURE Activity Report (1976–1977), LURE, Orsay, France.Google Scholar
  16. Harker D. (1956) Acta Cryst., 9, 1.CrossRefGoogle Scholar
  17. Harmsen A., Leberman R. and Schulz G.E. (1976) J. Mol. Biol., 104, 311.CrossRefGoogle Scholar
  18. Herriott J.R., Sieker L.C., Jensen L.H. and Lovenberg W. (1970) J. Mol. Biol., 50, 391.CrossRefGoogle Scholar
  19. Herzenberg A. and Lau H.S.M. (1967) Acta Cryst., 22, 24.CrossRefGoogle Scholar
  20. Hodgson K.O. (1978) (private communication).Google Scholar
  21. Hoppe W. and Jakubowsky U. (1976) Anomalous Scattering, edited by S. Ramaseshan and S.C. Abrahams, p. 437 — Copenhagen: Munksgaard.Google Scholar
  22. Kahn R. and Fourme R. (1976) (unpublished results).Google Scholar
  23. Kartha G. (1975) Anomalous Scattering, edited by S. Ramaseshan and S.C. Abrahams, p. 363 — Copenhagen: Munksgaard.Google Scholar
  24. Knox J.R., Kelly J.A., Moews P.C. and Murthy N.S. (1976) J. Mol. Biol., 104, 865.CrossRefGoogle Scholar
  25. Kohra K., Ando M., Matsushita T. and Hashizume H. (1978) Nucl. Instr. and Meth., 152, 161.ADSCrossRefGoogle Scholar
  26. Launois H. (1978), (Private communication.).Google Scholar
  27. Lemonnier M., Fourme R., Rousseaux F. and Kahn R. (1978) Nucl. Instr. and Meth., 152, 173.ADSCrossRefGoogle Scholar
  28. Lemonnier M., Collet O., Depautex C., Esteva J.M. and Raoux D. (1978) Nucl. Instr. and Meth., 152, 109.ADSCrossRefGoogle Scholar
  29. Matthews B.W. (1966) Acta Cryst., 20, 230.CrossRefGoogle Scholar
  30. Minor T.C., Milch J.R. and Reynolds G.T. (1974) J. Appl. Cryst., 7, 323.CrossRefGoogle Scholar
  31. Mokulskii M.A. (1978) European Physical Society Meeting, York, UK.Google Scholar
  32. Monteilhet C., Blow D. and Fourme R. (1978) European Physical Society Meeting, York, UK.Google Scholar
  33. Parkman C., Hajduk A., Jeavons A., Ford N. and Lindberg B. (1975) CERN report DD/75/14, CERN, Geneva, Switzerland.Google Scholar
  34. Phillips J.C., Wlodawer A., Yevitz M.M. and Hodgson K.O. (1976) P.N.A.S., 73, 128.CrossRefGoogle Scholar
  35. Phillips J.C., Wlodawer A., Goodfellow J.M., Watenpaugh K.D., Sieker L.C., Jensen L.H. and Hodgson K.O. (1977) Acta Cryst., A33, 445.Google Scholar
  36. Phillips J.C., Templeton D.H., Templeton L.K. and Hodgson K.O. (1978) Science, 201, 257.ADSCrossRefGoogle Scholar
  37. Reynolds G. (1970) IEEE Trans. Nucl. Sci., NS 17: Nb 3, 310.ADSCrossRefGoogle Scholar
  38. Schulz G.E. and Rosenbaum G. (1978) Nucl. Instr. and Meth., 152, 205.ADSCrossRefGoogle Scholar
  39. Sieker L.C., Adman E. and Jensen L.H. (1972) Nature, Lond. 235, 40.ADSCrossRefGoogle Scholar
  40. Sokolov A.A. and Ternov I.M. (1956) J. Exp. Theor. Phys. (USSR) 31, 473.Google Scholar
  41. Stenkamp R.E., Sieker L.C., Jensen L.H. and Loehr J.S. (1976) J. Mol. Biol., 100, 23.CrossRefGoogle Scholar
  42. Stuhrmann H.B. (1978a) Quart. Rev. Biophys., 11(1), 71.CrossRefGoogle Scholar
  43. Stuhrmann H.B. (1978 b) EMBL Outstation Activity Report, Hamburg, BRD. Watenpaugh K.D., Sieker L.C., Jensen L.H., Le Gall J. and Dubourdieu M. (1972) P.N.A.S. 69, 3185.Google Scholar
  44. Xuong N.H., et al., (1978) Acta Cryst., A34(2), 289.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • R. Fourme
    • 1
    • 2
  1. 1.Laboratoire de Physicochimie StructuraleUniversité Paris XIICréteilFrance
  2. 2.Lure (CNRS, Université Paris-Sud)OrsayFrance

Personalised recommendations