Advertisement

Excited State Interactions and Photochemical Reactions in Protein-Nucleic Acid Complexes

  • Claude Helene
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 25)

Abstract

Protein-nucleic acid complexes are of central importance in molecular biology. The expression of genetic information and its regulation require the formation of such highly specific complexes. An investigation of the excited states and of the photochemical behavior of these complexes has different purposes: i) excited state properties may be used to obtain information on the mechanism of complex formation and on the nature of molecular interactions involved in these complexes; ii) the study of photochemical reactions in protein-nucleic acid complexes should help us understand the action of UV radiations on biological systems; iii) the formation of photochemical cross-links between a protein and a nucleic acid in a specific complex should provide information on the regions of the two macromolecules which are in close contact in the complex. The use of photochemical cross-linking reactions should be comparable to that of bifunctional chemical reagents with the advantage that the photochemical reaction directly links two chemical groups one on each macromolecule.

Keywords

Fluorescence Quenching Aromatic Amino Acid Energy Transfer Process Nucleic Acid Basis Pyrimidine Dimer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    J.W. Longworth (1971) in “Excited States of Proteins and Nucleic Acids”, R.F. Steiner and I. Weinryb Ed., Plenum Press, pp. 319-484.Google Scholar
  2. (2).
    M. Daniels (1976) in “Photochemistry and Photobiology of Nucleic Acids”, S. Y. Wang Ed., Academic Press, vol. I, pp. 23-108.Google Scholar
  3. (3).
    J. Eisinger and A.A. Lamola (1971) in reference J pp. 107-198.Google Scholar
  4. (4).
    C. Hélène (1973) in “Physico-chemical Properties of Nucleic Acids”, J. Duchesne Ed., Academic Press, vol. I, pp. 119-142.Google Scholar
  5. (5).
    T. Montenay-Garestier and C. Hélène (1968) Nature, 217, 844–845.ADSCrossRefGoogle Scholar
  6. (6).
    T. Montenay-Garestier and C. Hélène (1971) Biochemistry, 70, 300–306.Google Scholar
  7. (7).
    C. Hélène, T. Montenay-Garestier and J. L. Dimicoli (1971) Biochim. Biophys. Acta, 254, 349–365.CrossRefGoogle Scholar
  8. (8).
    T. Montenay-Garestier and C. Hélène (1973) J. Chim. Phys. 70, 1385–1390.Google Scholar
  9. (9).
    T. Montenay-Garestier and C. Hélène (1973) J. Chim. Phys. 70, 1391–1399.Google Scholar
  10. (10).
    C. Hélène (1973) Photochem. Photobiol., 18, 255–262.CrossRefGoogle Scholar
  11. (11).
    T. Montenay-Garestier (1976) in “Excited States of Biological Molecules”, J. B. Birks Ed., Academic Press, pp. 207-216.Google Scholar
  12. (12).
    C. Hélène (1976) in reference 11, pp. 151-166.Google Scholar
  13. (13).
    J. L. Dimicoli and C. Hélène (1974) Biochemistry, 13, 714–723 and 724-730.CrossRefGoogle Scholar
  14. (14).
    M. Durand, J. C. Maurizot, H. N. Borazan and C. Hélène (1975) Biochemistry, 14, 563–570.CrossRefGoogle Scholar
  15. (15).
    F. Brun, J. J. Toulmé and C. Hélène (1975) Biochemistry, 14, 558–563.CrossRefGoogle Scholar
  16. (16).
    J. J. Toulmé, M. Charlier and C. Hélène (1974) Proc. Nat. Acad. Sci. USA, 71, 3185–3188.ADSCrossRefGoogle Scholar
  17. (17).
    J. Feitelson (1964) J. Phys. Chem., 68, 391–397.CrossRefGoogle Scholar
  18. (18).
    T. Montenay-Garestier (1975) Photochem. Photobiol., 22, 3–6.CrossRefGoogle Scholar
  19. (19).
    T. Montenay-Garestier, F. Brun and C. Hélène (1976) Photochem. Photobiol., 23, 87–91.CrossRefGoogle Scholar
  20. (20).
    J. Feitelson and E. Hayon (1973) Photochem. Photobiol., 17, 265–274.CrossRefGoogle Scholar
  21. (21).
    D.V. Bent and E. Hayon (1975) J. Am. Chem. Soc., 97, 2612–2619.CrossRefGoogle Scholar
  22. (22).
    P. Walrant, R. Santus and M. Charlier (1976) Photochem. Photobiol., 24, 13–19.CrossRefGoogle Scholar
  23. (23).
    P. R. Schimmel, G. P. Budzik, S.S.M. Lam and H. J. P. Schoemaker (1976) in “Aging, Carcinogenesis and Radiation Biology”, K.C. Smith Ed., Plenum Press, pp. 123-148.Google Scholar
  24. (24).
    K.C. Smith (1976) in “Photochemistry and Photobiology of Nucleic Acids”, S. Y. Wang Ed., Acad. Press, vol, 2, 187-218.Google Scholar
  25. (25).
    B. Ehresmann, J. Reinbolt and J. P. Ebel (1975) FEBS Letters, 58, 106–111.CrossRefGoogle Scholar
  26. (26).
    R. Ogata and W. Gilbert (1977) Proc. Nat. Acad. Sci. USA, 74, 4973–4976.ADSCrossRefGoogle Scholar
  27. (27).
    S.Y. Liu and A.D. Riggs (1974) Proc. Nat. Acad. Sci. USA, 71, 947–951.ADSCrossRefGoogle Scholar
  28. (28).
    C. Hélène (1976) in reference 23, pp. 149-163.Google Scholar
  29. (29).
    A. J. Varghese (1976) in reference 23, pp. 207-223.Google Scholar
  30. (30).
    M.D. Shetlar, H. N. Schott, H. G. Martinson and E. T. Liu, (1975) Biochem. Biophys. Res. Comm., 66, 88–93.CrossRefGoogle Scholar
  31. (31).
    D. Elad (1976) in reference 23, pp. 243-260.Google Scholar
  32. (32).
    M. Charlier and C. Hélène (1975) Photochem. Photobiol., 21, 31–37.CrossRefGoogle Scholar
  33. (33).
    C. Hélène, F. Toulmé, M. Charlier and M. Yaniv (1976) Biochem. Biophys. Res. Comm., 71, 91–98.CrossRefGoogle Scholar
  34. (34).
    R. Mayer, F. Toulmé, T. Montenay-Garestier and C. Hélène (1978) J. Biol. Chem. (in press).Google Scholar
  35. (35).
    C. Hélène and M. Charlier (1977) Photochem. Photobiol., 25, 429–434.CrossRefGoogle Scholar
  36. (36).
    C. Hélène (1977) in “Excited States in Organic Chemistry & Biochemistry”, B. Pullman and N. Goldblum Eds, Reidel, pp. 65-78.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Claude Helene
    • 1
  1. 1.Centre de Biophysique MoléculaireOrléans CedexFrance

Personalised recommendations