Excited States of Proteins

  • Claude Helene
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 25)


Much information can be gained on proteins and on their complexes with ligands by using the excited state properties of their aromatic residues. Not only can one determine the parameters characterizing the environment of these residues and local conformational changes arising from the perturbation of this environment due, e. g., to ligand binding or to denaturation. But one can also obtain information on the processes which take place in the time range of the excited state lifetime (nanosecond). These processes include rotational motion, local fluctuations, relaxation of the fluorophor surroundings, energy transfer processes (1).


Aromatic Amino Acid Fluorescence Quantum Yield Tryptophan Residue Wheat Germ Agglutinin Indole Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1a).
    G. Weber (1976) in Excited States of Biological Molecules” J.B. Birks Ed., Wiley, pp. 363-374.Google Scholar
  2. b).
    R. Lumry and M. Herschberger (1978) Photochem. Photobiol. 27, 819–840.CrossRefGoogle Scholar
  3. (2a).
    G. H. Beaven and E.R. Holiday (1952) Advances in Protein Chemistry, 7, 319–386.CrossRefGoogle Scholar
  4. b).
    B. Wetlaufer (1962) Advances in Protein Chemistry, 17, 303–390.CrossRefGoogle Scholar
  5. (3).
    T.T. Herskovits and S. M. Sorensen (1968) Biochemistry, 7, 2533–2542.CrossRefGoogle Scholar
  6. (4).
    M.S. Walker, T. W. Bednar, R. Lumry and F. Humphries (1971) Photochem. Photobiol., 14, 147–161.CrossRefGoogle Scholar
  7. (5).
    J. Eisinger and G. Navon (1969) J. Chem. Phys., 50, 2069–2077.ADSCrossRefGoogle Scholar
  8. (6).
    J. Feitelson (1970) Israel J. Chem., 8, 241–252.Google Scholar
  9. (7).
    I. Weinryb and R.F. Steiner (1971) in “Excited States of Proteins and Nucleic Acids”, Mac Millan, pp. 277-318.Google Scholar
  10. (8).
    D.M. Rayner, D.T. Krajcarski and A. G. Szabo (1978) Can. J. Biochem., 56, 1238–1245.CrossRefGoogle Scholar
  11. (9).
    I. Tatischeff and R. Klein (1975) Photochem. Photobiol., 22, 221–229.CrossRefGoogle Scholar
  12. (10a).
    L.I. Grossweiner, A. G. Kaluskar and J. F. Baugher (1976) Int. J. Radiot. Biol., 29., 1–16.CrossRefGoogle Scholar
  13. b).
    J. F. Baugher and L.I. Grossweiner (1977) J. Phys. Chem., 81, 1349–1354.CrossRefGoogle Scholar
  14. c).
    R.F. Evans, C.A. Ghiron, W. A. Volkert and R. R. Kuntz, (1976) Chem. Phys. Letters, 42, 43–45.ADSCrossRefGoogle Scholar
  15. R.F. Evans, C.A. Ghiron, W. A. Volkert and R. R. Kuntz, (1976) Photochem. Photobiol., 24, 3–7.CrossRefGoogle Scholar
  16. (11).
    R. Santus, C. Hélène and M. Ptak (1968) Photochem. Photobiol., 7, 341–360.CrossRefGoogle Scholar
  17. (12).
    R.F. Steiner and E. Kirby (1969) J. Phys. Chem., 73, 4130–4135.CrossRefGoogle Scholar
  18. (13).
    J. P. Privat and M. Charlier (1978) Eur. J. Biochem., 84, 79–85.CrossRefGoogle Scholar
  19. (14).
    P. Walrant and R. Santus (1974) Photochem. Photobiol., 19, 411-417 and 20, 455–460.CrossRefGoogle Scholar
  20. (15).
    R. Santus and L.I. Grossweiner (1972) Photochem. Photobiol., 15, 101.CrossRefGoogle Scholar
  21. (16).
    J. W. Longworth (1971) in ref. 7, pp. 319-484.Google Scholar
  22. (17).
    E.A. Burstein, N. S. Vedenkina and M. N. Ivkova (1973) Photochem. Photobiol., 18, 263–279.CrossRefGoogle Scholar
  23. (18).
    A. Szabo, K. Lynn, D. Krajcarski and D. M. Rayner (1978) Intern. Conf. On Luminescence (Paris) pp. 263-264.Google Scholar
  24. (19).
    S.S. Lehrer (1971) Biochemistry, 10, 3254–3263.CrossRefGoogle Scholar
  25. (20).
    J. Eisinger (1969) Biochemistry, 8, 3902–3907.CrossRefGoogle Scholar
  26. (21).
    R.E. Dale and J. Eisinger (1974) Biopolymers, 13, 1573–1605.CrossRefGoogle Scholar
  27. (22).
    P. Marche, T. Montenay-Garestier, C. Hélène and P. Fromageot (1976) Biochemistry, 15, 5730–5737.CrossRefGoogle Scholar
  28. (23).
    R.A. Badley and F. W. J. Teale (1969) J. Mol. Biol., 44, 71–88.CrossRefGoogle Scholar
  29. (24)a).
    M. L. Saviotti and W.C. Galley (1974) Proc. Nat. Acad. Sci. USA, 71, 4154–4158.ADSCrossRefGoogle Scholar
  30. b).
    G. B. Strambini and W.C. Galley (1976) Nature, 260, 554–556.ADSCrossRefGoogle Scholar
  31. (25).
    J. Spikes and G. Jori (1978) Photochem. Photobiol. Rev., K. Smith Ed., Plenum Press, vol. 3, ch. 6 (in press).Google Scholar
  32. (26).
    B. Müller-Hill (1975) Prog. Biophys. Mol. Biol., 30, 227–252.CrossRefGoogle Scholar
  33. (27).
    M. Charlier, F. Culard, J. C. Maurizot and C. Hélène (1977) Biochem. Biophys. Res. Comm., 74, 690–698.CrossRefGoogle Scholar
  34. (28).
    J. C. Brochon, Ph. Wahl, M. Charlier, J. C. Maurizot and C. Hélène (1977) Biochem. Biophys. Res. Comm., 79, 1261–1271.CrossRefGoogle Scholar
  35. (29).
    P. Marche, T. Montenay-Garestier, P. Fromageot and C. Hélène (1976) Biochemistry, 15, 5738–5743.CrossRefGoogle Scholar
  36. (30).
    S. P. Mc Glynn, T. Azumi and M. Kinoshita (1969) in “Molecular Spectroscopy of the triplet state”, Prentice Hall.Google Scholar
  37. (31).
    M. Monsigny, F. Delmotte and C. Hélène (1978) Proc. Nat. Acad. Sci. USA, 75, 1324–1328.ADSCrossRefGoogle Scholar
  38. (32).
    B. Valeur and G. Weber (1977) Photochem. Photobiol., 25, 441–444.CrossRefGoogle Scholar
  39. (33).
    I.Z. Steinberg (1978) Ann. Rev. Biophys. Bioeng. 7, 113–137.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Claude Helene
    • 1
  1. 1.Centre de Biophysique MoléculaireOrléans CedexFrance

Personalised recommendations