Advertisement

The Role of Polarization in Microscopic Physics

  • Michael J. Moravcsik

Abstract

In this lecture I want to give a brief summary, accessible to physicists in all fields of research, of the essential role polarizations play in microscopic (that is, atomic and subatomic) physics. I will outline the essential features and illustrate them on a simple example that is familiar to everybody from studies of elementary quantum mechanics.

Keywords

Identical Particle Polarization Experiment Arbitrary Spin Particle Reaction Time Reversal Invariance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.L. Csonka, M.J. Moravcsik and M.D. Scadron, Non-existence of Parity Experiments in Multiparticle Reactions. Phys. Rev. Letters, 14, 861 (1965).CrossRefGoogle Scholar
  2. 2.
    P.L. Csonka, M.J. Moravcsik and M.D. Scadron, Parity Determination in Particle Physics. Phys. Letters, 15, 353 (1965).CrossRefGoogle Scholar
  3. 3.
    P.L. Csonka, M.J. Moravcsik and M.D. Scadron, The Non-Dynamical Structure of the He (d, p) He Reaction. Phys. Rev., 143, 775 (1966).CrossRefGoogle Scholar
  4. 4.
    P.L. Csonka, M.J. Moravcsik and M.D. Scadron, General Non-dynamical Formalism for Reactions with particles of Arbitrary Spin: Composite Reactions and Partial Wave Expansions. Phys. Rev., 143, 1324 (1966).CrossRefGoogle Scholar
  5. 5.
    P.L. Csonka and M.J. Moravcsik, Non-dynamical Formalism and Tests of Time Reversal Invariance. Phys. Rev., 152, 1310 (1966).CrossRefGoogle Scholar
  6. 6.
    P.L. Csonka, M.J. Moravcsik and M.D. Scadron, General Phenomenological Formalism for Reactions with Particles of Arbitrary Spin. I. Rotation Invariance. Annals of Physics, 40, 100 (1966).CrossRefGoogle Scholar
  7. 7.
    P.L. Csonka, M.J. Moravcsik and M.D. Scadron, Non-Dynamical Methods to Determine Parities and to Test Invariance Principles. Nuovo Cimento, 42, 743 (1966).CrossRefGoogle Scholar
  8. 8.
    P.L. Csonka, M.J. Moravcsik and M.D. Scadron, Non-Dynamical Spin and Parity Experiments. Phys. Letters, 20, 67 (1966).CrossRefGoogle Scholar
  9. 9.
    P.L. Csonka and M.J. Moravcsik, Productset Populations of Reactions Involving Particles of Arbitrary Spin. Journal of Natural Science and Math. (Pakistan), 6, (1966).Google Scholar
  10. 10.
    P.L. Csonka, M.J. Moravcsik and M.D. Scadon, General Non-Dynamical Formalism for Reactions with Particles and Arbitrary Spin:Number of Invariants, Parity Conservation. Annals of Physics, 41, 1 (1967).CrossRefGoogle Scholar
  11. 11.
    P.L. Csonka, M.J. Moravcsik and M.D. Scadron, The Non-dynamical Structure of Photoproduction Processes. Rev. Mod. Physics, 39, 178 (1967).CrossRefGoogle Scholar
  12. 12.
    P.L. Csonka and M.J. Moravcsik, A Maximum Complexity Theorem for Non-Dynamical Parity Tests. Nuovo Cimento, 50A, 422 (1967).CrossRefGoogle Scholar
  13. 13.
    P.L. Csonka and M.J. Moravcsik, Mirror Relations as Non-Dynamical Tests of Conservation Laws. Phys. Rev., 167, 1516 (1968).CrossRefGoogle Scholar
  14. 14.
    P.L. Csonka and M.J. Moravcsik, Non-Dynamical Tests of the CPT Theorem and Related Symmetries. Phys. Rev., 165, 1915 (1968).CrossRefGoogle Scholar
  15. 15.
    P.L. Csonka and M.J. Moravcsik, Non-Dynamical Structure of Particle Reactions Containing Identical Particles, Phys. Rev., D1, 1821 (1970).Google Scholar
  16. 16.
    P.L. Csonka and M.J. Moravcsik, Non-dynamical Properties of Particle Reactions. Particles and Nuclei, 1, 337 (1971).Google Scholar
  17. 17.
    P.L. Csonka, T. Haratani and M.J. Moravcsik, An introduction to X-coefficients and a Tabulation of their Values. Nuclear Data, 9, 235 (1971).CrossRefGoogle Scholar
  18. 18.
    P.L. Csonka and M.J. Moravcsik, Identical Particles, Crossing, and CPT. Phys. Rev., D5, 2546 (1972).Google Scholar
  19. 19.
    G.R. Goldstein, M.J. Moravcsik, J.F. Owens III and J.P. Rutherford, Spin Correlation Measurements in Pseudoscalar Meson Photoproduction. Nucl. Phys., B80, 164 (1974).CrossRefGoogle Scholar
  20. 20.
    G.R. Goldstein, M.J. Moravcsik and D. Bregman, Determination of Reaction Amplitudes from Experimental Observables. Nuovo Cimento Letters, 11, 137 (1974).CrossRefGoogle Scholar
  21. 21.
    G.R. Goldstein and M.J. Moravcsik, Determination of Amplitudes from Observables in Quantum Mechanical Systems. J. of Math. Phys. (to be published ) (1976).Google Scholar
  22. 22.
    G.R. Goldstein and M.J. Moravcsik, Optimally simple Connection between the Reaction Matrix and the Observables. Annals of Phys., (to be published)(1976).Google Scholar
  23. 23.
    G.R. Goldstein and M.J. Moravcsik, A No-Go Theorem for Polarization Structure, Journ. Math. Physics (in press, 1978).Google Scholar
  24. 24.
    L.J. Gutay, J.E. Lanutti, P.L. Csonka, M.J. Moravcsik and M.D. Scadron, Final State Enhancement at 1920 MeV in Inelastic Scattering. Physics Letters, 16, 343 (1965).CrossRefGoogle Scholar
  25. 25.
    G.L. Kane and M.J. Moravcsik, Can the Parity of the Q be measured? Phys. Rev., 176, 1733 (1968).CrossRefGoogle Scholar
  26. 26.
    K.C. Lam and M.J. Moravcsik, The Spin Structure of Exchange Processes, Phys. Rev., D8, No. 11 (1973).Google Scholar
  27. 27.
    M.J. Moravcsik, Second Resonance in Pion Photoproduction. Phys. Rev. Letters, 2, 171 (1959).CrossRefGoogle Scholar
  28. 28.
    M.J. Moravcsik, Boson Photoproduction Experiments. Phys. Rev., 125, 1088 (1962).CrossRefGoogle Scholar
  29. 29.
    M.J. Moravcsik, The Non-Dynamical Structure of Particle Reactions. In Recent Developments in Particle Physics, ed. M.J. Moravcsik (Proceedings of the First Pacific International Summer School in Physics, Hawaii 1965 ), Gordon & Breach, New York, 1966, pp. 197–267.Google Scholar
  30. 30.
    M.J. Moravcsik, The Spin Structure of Nucleon-Nucleon Scattering. Proceedings of the International Conference on Polarization Phenomena of Nucleons, 1965, Burkhauser Verlag, Basel 1966.Google Scholar
  31. 31.
    M.J. Moravcsik, Non-Dynamical Structure of Particle Reactions. Proceedings of the Conference on Intermediate Energy Physics, Williamsburg, 1966, p. 517.Google Scholar
  32. 32.
    M.J. Moravcsik, Experimental Restrictions in the Determination of Invariant Amplitudes. Phys. Rev., 170, 1440 (1968).CrossRefGoogle Scholar
  33. 33.
    M.J. Moravcsik and Wing-Yin Y., Determination of Invariant Amplitudes from Experimental Observables. J. of Math. Phys., 10, 925 (1969).CrossRefGoogle Scholar
  34. 34.
    M.J. Moravcsik, Optimal Coordinate Representation for Particle Reactions. Nucl. Phys., A160, 569 (1971).CrossRefGoogle Scholar
  35. 35.
    M.J. Moravcsik, Non-dynamical Structure of Collinear Processes, Phys. Rev., D5, 836 (1972).Google Scholar
  36. 36.
    M.J. Moravcsik and P. Ghosh, Deuteron Wave Function at Small Distances, Phys. Rev. Letters, 32, 321 (1974).CrossRefGoogle Scholar
  37. 37.
    G. Ohlson, Polarization Transfer and Spin Correlation Experiments in Nuclear Physics, Rep. Prog. Phys., 35, 717 (1972)CrossRefGoogle Scholar
  38. 38.
    R. Reid and M.J. Moravcsik, The Non-dynamical Structure of the Reaction involving four Spin -1/2 Particles. Annals of Physics, 84, 535 (1974).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Michael J. Moravcsik
    • 1
  1. 1.Institute of Theoretical ScienceUniversity of OregonEugeneUSA

Personalised recommendations