Computational Methods in Physics

  • K. V. Roberts

Abstract

This article discusses some aspects of the application of computers in Physics. Clearly the subject is nowadays very wide: computers are used by physicists in a great variety of ways and the number of different types of application is continually increasing. The article therefore begins by establishing some general principles and then progressively narrows down to one specific field of application, namely the solution of classical partial differential equations in hydrodynamics and plasma physics which is the author’s main field of interest. The last section deals with practical programming techniques and considers the scope for international collaboration. It is hoped that in this way both the wood as a whole and some of the more significant and interesting trees will be adequately displayed.

Keywords

Entropy Vortex Soliton Explosive Vorticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Computers and their Role in the Physical Sciences’, ed Fernbach and Taub, Gordon & Breach, New York-(1970).Google Scholar
  2. 2.
    Computers as a Language of Physics’, Seminar Course held at the International Centre for Theoretical Physics, Trieste, August 1971. IAEA Vienna (1972).Google Scholar
  3. 3.
    The Impact of Computers on Physics’, Comp. Phys. Commun. Vol.3 Suppl. (1972).Google Scholar
  4. 4.
    Methods in Computational Physics’, ed. Alder, Fernbach & Killeen (and previously by Rotenberg), Vol.1 (1963) - Vol. 17 ( 1977 ), Academic Press, New York.Google Scholar
  5. 5.
    Journal of Computational Physics’, ed. Alder, Fernbach & Killeen (and previously by Rotenberg), Vol.1 (1966) - Vol. 30 ( 1979 ), Academic Press, New York.Google Scholar
  6. 6.
    Computer Physics Communications’, ed. Burke, Vol. 1 (1969) - Vol. 15 (1978), North Holland, and the ‘International Physics Program Library, Queens University, Belfast.Google Scholar
  7. 7.
    D.E. Potter, ‘Computational Physics’, Wiley, London (1973).Google Scholar
  8. 8.
    K. Appel & W. Haken, ‘The Solutions of the Four-Colour-Map Problem’ Scientific American Vol. 237, No. 4, 108 Oct. (1977).Google Scholar
  9. 9.
    W.E. Kock, ‘Engineering Applications of Lasers and Holography’, Plenum Press, London & New York (1975).Google Scholar
  10. 10.
    K.V. Roberts, ‘Trends in Computational Physics’, in Computational Methods in Classical and Quantum Physics, (ed. M.B. Hooper, Advance Publications Ltd., (1976).Google Scholar
  11. 11.
    K.V.Roberts & J.P.Boris, ‘The Solution of Partial Differential Equations using a Symbolic Style of Alogl’, J. Comp. Phys., 8, 83 (1971);Google Scholar
  12. M. Petravic, G. Kuo Petravic & K.V. Roberts, ‘Automatic Optimization of Symbolic Algol Programs, I’, General Principles, J. Comp. Phys., 10, 503 (1972).CrossRefGoogle Scholar
  13. 12.
    G.M. Schneider, W. Weingart & D.M. Perlman, ‘An Introduction to Programming and Problem Solving in PASCAL’, Wiley (1978).Google Scholar
  14. 13.
    K.V. Roberts, ‘FORTRAN’, in ’Software Engineering’ (ed. R.ßI. Perrott ), Academic Press (1977).Google Scholar
  15. 14.
    Draft Proposed ANS FORTRAN, Sigplan Notices, 11, No. 3 (March 1976)Google Scholar
  16. 15.
    J. von Neumann, Probabilistic Logics and the Synthesis of Reliable Organisms from Unreliable Components’, Automata Studies, Princeton University Press (1956).Google Scholar
  17. 16.
    E. Schrödinger, ‘What is Life? The Physical Aspect of the Living Cell’, Cambridge University Press (1945).Google Scholar
  18. 17.
    K.V. Roberts & D.E. Potter, ‘MHD Calculations’, Methods in Computational Physics, 9, 340 (1970).Google Scholar
  19. 18.
    J.E. Fromm, Methods in Computational Physics, 3, 345 (1964).Google Scholar
  20. 19.
    F.H. Harlow, ‘Numerical Methods for Fluid Dynamics, an Annotated Bibliography, Los Alamos Report LA-4281 (1970).Google Scholar
  21. 20.
    F.H. Abernathy & R.E. Kronauer, J.Fluid Mech., 13, 1 (1962).CrossRefGoogle Scholar
  22. 21.
    J.P. Chri-stiansen, J. Comp. Phys., 13, 363 (1973);CrossRefGoogle Scholar
  23. K.V. Roberts & J.P. Christiansen, Comp. Phys. Commun., 3 (Suppl.) 14 (1972);CrossRefGoogle Scholar
  24. J.P. Christiansen & N.J. Zabusky, J. Fluid Mech., 61, 219 (1973).CrossRefGoogle Scholar
  25. 22.
    R.W. Hockney, J. Assoc. Comput. Mach., 12, 95 (1965).CrossRefGoogle Scholar
  26. 23.
    K.V. Roberts & H.L. Berk, Phys. Rev. Lett., 19, 297 (1967);CrossRefGoogle Scholar
  27. H.L. Berk & K.V. Roberts, Phys. Fluids, 10, 1595 (1967), Methods in Computational Physics, 9, 88 (1970).Google Scholar
  28. 24.
    G.S. Deem & N.J. Zabusky, Phys. Rev. Lett., 40, 859 (1978).CrossRefGoogle Scholar
  29. 25.
    S.J. Zaroodney & M.D. Greenberg, J. Comp. Phys., 11, 440 (1973).CrossRefGoogle Scholar
  30. 26.
    N.J. Zabusky, Comp. Phys. Commun., 5, 1 (1973).CrossRefGoogle Scholar
  31. 27.
    See, C.W. Gowers et al, Proceedings of the sixth Conference on Plasma Physics and Controlled Nuclear Fusion Research, 1976, Vol. II, P.429. IAEA Vienna (1977).Google Scholar
  32. 28.
    K.V. Roberts & N.O. Weiss, Math. Comp., 20, 272 (1966).CrossRefGoogle Scholar
  33. 29.
    K.J. Whiteman, Rep. Prog. Phys., 40, 1033 (1977).Google Scholar
  34. 30.
    J.P. Boris, D.L. Book & K. Hain, J. Comp. Phys., 18, 248 (1975).CrossRefGoogle Scholar
  35. 31.
    G.A. Sod, J. Comp. Phys., 27, 1 (1978).CrossRefGoogle Scholar
  36. 32.
    R.F. Warming & B.J. Hyett, J. Comp. Phys., 14, 159 (1974).CrossRefGoogle Scholar
  37. 33.
    R.D. Richtmyer & K.W. Morton, ‘Difference Methods for Initial Value Problems’, 2nd Ed. p. 292, Interscience (1967).Google Scholar
  38. 34.
    N.A. Phillips, ‘An Example of Non-Linear Computational Instability in ’The Atmosphere and the Sea in Motion’, Rockefeller Institute Press, New York (1959).Google Scholar
  39. 35.
    S.A. Orszag, Stud. in Appl. Math., 50, 293 (1971).Google Scholar
  40. 36.
    loc.cit.ref. 33 p. 198.Google Scholar
  41. 37.
    J.P. Christiansen, D.E.T.F. Ashby & K.V. Roberts, Comp. Phys. Commun. 7, 271 (1974).CrossRefGoogle Scholar
  42. 38.
    A survey of numerical methods in plasma physics is contained in the review volume ‘Methods in Computational Physics’, Vol. 9, ’Plasma Physics’, ed. B.Alder, S.Fernbach & M.Rotenberg, Academic Press, New York (1970).Google Scholar
  43. 39.
    Work on plasma simulation is covered by ‘Proceedings of the Fourth Conference on Numerical Simulation of Plasmas’, Naval Research Laboratory, Washington DC, November 1970, Office of Naval Research (1971).Google Scholar
  44. 40.
    F.H. Harlow, ‘Contour Dynamics for Numerical Fluid Flow Calculations’, J. Comp. Phys., 8, 214 (1971);CrossRefGoogle Scholar
  45. N.J. Zabusky, M.H. Hughes & K.V. Roberts, ‘Contour Dynamics for the Euler Equations in Two Dimensions’, J. Comp. Phys, to be published, see ref. 23.Google Scholar
  46. 41.
    R.W. Hockney, Phys. Fluids, 9, 1826 (1966);CrossRefGoogle Scholar
  47. P. Burger, D.A. Dunn & A.S. Halstead, Phys. Fluids, 8, 2263 (1965);CrossRefGoogle Scholar
  48. O. Buneman, J. Comp. Phys., 1, 517 (1967).CrossRefGoogle Scholar
  49. 42.
    R.L. Morse, ‘Multidimensional Plasma Simulation by the Particlein-Cell Method’, loc.cit. ref 2, pp 213–239;Google Scholar
  50. C.K. Birdsall, A.B. Langdon and H. Okuda, loc.cit. ref. 2, pp 241–258.Google Scholar
  51. 43.
    R.W. Hockney, ‘Particle Models in Plasma Physics’, paper C, Vol.1, IPPS Conference on Computational Physics, Culham Laboratory, July 1969, Proceedings published as Culham Report CLM-CP (1969), (2 vols) HMSO London.Google Scholar
  52. 44.
    For references see R.W. Hockney, ‘The Potential Calculation and Some Applications’, Methods in Computational Physics, Vol.9, ’Plasma Physics’, pp 135–211.Google Scholar
  53. 45.
    R.W. Hockney, Journ. ACM., 12, 95 (1965).CrossRefGoogle Scholar
  54. 46.
    J.P. Boris & K.V. Roberts, ‘The Optimization of Particle Codes in 2 & 3 Dimensions’, J. Comp. Phys., 4, 552 (1969).CrossRefGoogle Scholar
  55. 47.
    J.H. Orens, J.P. Boris & I. Haber, ‘Optimization Techniques for Particle Codes’, loc.cit. ref. 3, p. 526.Google Scholar
  56. 48.
    B. Rosen, W.L. Kruer & J.W. Dawson, ‘A New Version of the Dipole Expansion Scheme’, loc.cit. Ref. 3, p. 561.Google Scholar
  57. 49.
    J.A.Byers & M.S.Grewal, Phys. Fluids, 13, 1819 (1970).CrossRefGoogle Scholar
  58. 50.
    J.A. Byers, ‘Noise Suppression Techniques in Macroparticle Models of Collisionless Plasmas’, loc.cit. ref. 3, p. 496.Google Scholar
  59. 51.
    A.B. Langdon, ‘Non-physical modifications to oscillations, fluctuations and collisions due to space-time differencing’, loc.cit ref. 3, p. 467.Google Scholar
  60. 52.
    A.B. Langdon, J. Comp. Phys., 6, 247 (1970).CrossRefGoogle Scholar
  61. 53.
    H. Okuda, ‘Non-physical noises and instabilities in plasma simulation due to a spatial grid’, J. Comp. Phys., 10, 475 (1972).CrossRefGoogle Scholar
  62. 54.
    J.M. Dawson, ‘Contributions of computer simulation to plasma theory’, Comp. Phys. Comm., Suppl. 3, 79 (1972).Google Scholar
  63. 55.
    K.V. Roberts, Computer Phys. Commun., 7, 237 (1974).CrossRefGoogle Scholar
  64. 56.
    Standard Fortran Programming Manual’, Computer Standards Series National Computer Centre Ltd, Manchester, England (1970).Google Scholar
  65. 57.
    J.P. Christiansen and K.V. Roberts, Computer Phys. Commun., 7, 245 (1974).CrossRefGoogle Scholar
  66. 58.
    M.H. Hughes, K.V. Roberts and P.D. Roberts, Computer Phys. Commun. 9, 51 (1975).CrossRefGoogle Scholar
  67. 59.
    M.H. Hughes, G.G. Lister and K.V. Roberts Computer Phys. Commun 10, 167 (1975).Google Scholar
  68. 60.
    M.H. Hughes and A.P.V. Roberts, Computer Phys. Commun., 8, 118 (1974).Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • K. V. Roberts
    • 1
  1. 1.Culham Laboratory, AbingdonOxonEngland

Personalised recommendations