Ceruloplasmin: Copper Metabolism

  • Samuel Natelson
  • Ethan A. Natelson


Ceruloplasmin (ferroxidase I) first described in 1948, is the blue copper-containing oxidase present in the α2-globulin fraction of human serum (see Figure 3.5, Table 3.1). Close to 95% of the serum copper is located in this fraction.(1,2) The molecular weight of the major form of ceruloplasmin, referred to as ceruloplasmin I, is 134,000 ± 3000.(3) Consistent with its molecular weight, its sedimentation coefficient is 7.25s and diffusion coefficient 4.46 × 10 −7 cm2/sec. There are about 1065 amino acid residues in the molecule. The amino acid composition has been determined (Table 8.1).(3,4) Substantial progress has also been made in sequencing the molecule.(5,6)


Primary Biliary Cirrhosis Copper Level Amine Oxidase Copper Deficiency Serum Copper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Reading

  1. Gutteridge, J. M., Ceruloplasmin: A plasma protein, enzyme and antioxidant, Ann. Clin. Biochem 15: 293–296 (1978).Google Scholar
  2. Sternlieb, I., and Scheinberg, I. H., The role of radiocopper in the diagnosis of Wilson’s disease, Gastroenterology 77: 138–142 (1979).Google Scholar
  3. Poulik, M. D., and Weiss, M. L., Ceruloplasmin, in The Plasma Proteins. Vol. II, F. W. Putnam, Ed., Academic Press, New York (1975), pp. 51–108.Google Scholar
  4. Tasman-Jones, C., Kay, R. G., and Lee, S. P., Zinc and copper deficiency with particular reference to parenteral nutrition, Surg. Ann. 10: 23–53 (1978).Google Scholar
  5. Burgh, R. E., and Sullivan, J. F., Diagnosis of zinc, copper, and manganese abnormalities in man, Med. Clin. North Amer. 60: 655–660 (1976).Google Scholar
  6. Walshe, J. M., and Cumings, J. N., Wilson’s Disease: Some Current Concepts, Blackwell, Oxford (1961).Google Scholar
  7. Underwood, E. J., Trace Elements in Human and Animal Nutrition, Academic Press, New York (1971).Google Scholar
  8. Peisach, J., Aisen, P., and Blumberg, W. E., The Biochemistry of Copper, Academic Press, New York (1966).Google Scholar
  9. Holwerda, R. A., Electron transfer reactions of copper proteins, Ann. Rev. Biophys. Bioeng. 5: 363–396 (1976).Google Scholar
  10. Hayaishi, O., and Asada, K., Biochemical and Medical Aspects of Active Oxygen, University Park Press, Baltimore (1978).Google Scholar
  11. O’Dell, B. L., Biochemistry of copper, Med. Clin. North Amer. 60: 687–703 (1976).Google Scholar
  12. Sass-Kortsak, A., Copper metabolism, Adv. Clin. Chem. 8: 1–67 (1965).Google Scholar
  13. Holwerda, R. A., Wherland, S., and Gray, H. B., Electron transfer reactions of copper proteins, Ann. Rev. Biophys. Bioeng. 5: 363–396 (1976).Google Scholar
  14. Mondóvi, B., Morpurgo, L., Rotilio, G., and Finazzi-Agro, A., Recent studies on copper containing oxidases, Adv. Exp. Med. Biol. 74: 424–437 (1976).Google Scholar
  15. Barrow, M. V., Simpson, C. F., and Miller, E. J., Lathyrism: A review, Quart. Rev. Biol. 49: 101–128 (1974).Google Scholar
  16. Division of Medical Sciences, National Research Council, Copper: Medical and biologic effects of environmental pollutants, National Academy of Sciences, U.S., Publication, Washington, D.C. (1977).Google Scholar


  1. 1.
    Holmberg, C. G., and Laurell, C. B., Investigations in serum copper. II. Isolation of the copper containing protein and description of its properties, Acta Chem. Scand. 2: 550–556 (1948).Google Scholar
  2. 2.
    Malkin, R., and Malmstrom, B. G., The state and function of copper in biological systems, Adv. Enzymol. 33: 177–244 (1960).Google Scholar
  3. 3.
    Rydén, L., and Bjork, I., Reinvestigation of some physicochemical and chemical properties of human ceruloplasmin (ferroxidase), Biochem. 15: 3411–3417 (1976).Google Scholar
  4. 4.
    Kasper, C. B., and Deutsch, H. F., Immunochemical studies of crystalline human ceruloplasmin and derivatives, J. Biol. Chem. 231: 2343–2350 (1963).Google Scholar
  5. 5.
    Rydén, L., Single-chain structure of human ceruloplasmin, Eur. J. Biochem. 26: 380–386 (1972).Google Scholar
  6. 6.
    Rydén, L., and Eaker, D., The amino-acid sequences of three tryptic glycopeptides from human ceruloplasmin, Eur. J. Biochem. 44: 171–180 (1974).Google Scholar
  7. 7.
    Rydén, L., The relation of artifactual and real polymorphism of human ceruloplasmin to its polypeptide chain and carbohydrate structure, Protides Biol. Fluids Proc. Colloq. 22: 633–639 (1975).Google Scholar
  8. 8.
    Jamieson, G. A., Studies of glycoproteins. I. The carbohydrate portion of human ceruloplasmin, J. Biol. Chem. 260: 2019–2027 (1965).Google Scholar
  9. 9.
    Beam, A., and Kunkel, H., Localization of Cu64 in serum fractions following oral administration: An alteration in Wilson’s disease, Proc. Soc. Exp. Biol. Med. 85: 44–48 (1954).Google Scholar
  10. 10.
    Scheinberg, I. H., and Morell, A. G., Exchange of ceruloplasmin copper with ionic Cu“ with reference to Wilson’s disease, J. Clin. Invest. 36: 1193–1201 (1957).Google Scholar
  11. 11.
    Owen, C. A., Jr., Uptake of 67Cu by ceruloplasmin in vitro, Proc. Soc. Exp. Biol. Med. 149: 681–682 (1975).Google Scholar
  12. 12.
    Holwerda, R. A., Wherland, S., and Gray, H. B., Electron transfer reactions of copper proteins, Ann. Rev. Biophys. Bioeng. 5: 363–393 (1976).Google Scholar
  13. 13.
    Rydén, L., and Lundgren, J-O., Homology relationships among the small blue proteins, Nature 261: 344–345 (1976).Google Scholar
  14. 14.
    Mondóvi, B., Morpurgo, L., Rotilio, G., and Finazzi-Agro, A., Recent studies on copper containing oxidases, Adv. Exp. Med. Biol. 74: 424–437 (1976).Google Scholar
  15. 15.
    Rejaudier, L., Audras, R., and Steinbuch, M., Caprylic acid as an acid for the rapid isolation of human ceruloplasmin, Clin. Chim. Acta 30: 387–394 (1970).Google Scholar
  16. 16.
    Mason, H. W., Binuclear copper clusters as active sites for oxidases, Adv. Exp. Med. Biol. 74: 464–469 (1976).Google Scholar
  17. 17.
    Natelson, S., Microtechniques of Clinical Chemistry, 3rd ed., Charles C Thomas, Springfield, Ill. (1971), p. 283.Google Scholar
  18. 18.
    Sgouris, J. T., McCall, K. B., Coryell, F. C., Gallick, H., Hyndman, L. A., and Anderson, H. D., The fractionation of heparinized blood, Vox Sang. 7: 3952 (1962).Google Scholar
  19. 19.
    Bjorling, H., Concentration and purification of ceruloplasmin from human blood plasma fractions, Vox Sang. 8: 641–659 (1963).Google Scholar
  20. 20.
    Freeman, S., and Daniel, E., Dissociation and reconstitution of human ceruloplasmin, Biochemistry 12: 4806–4810 (1973).Google Scholar
  21. 21.
    Shavlovskii, M. M., and Vasilets, I. M., Catalytic binding of copper to human ceruloplasmin photokinetically, Biokhimiya 37: 507–514 (1972).Google Scholar
  22. 22.
    Simons, K., and Beam, A. G., Isolation and partial characterization of the polypeptide chains in human ceruloplasmin, Biochim. Biophys. Acta 175: 260-270 (1969).Google Scholar
  23. 23.
    Shreffler, D. C., Brewer, G. J., Gall, J. C., and Honeyman, M. S., Electrophoretic variation in human serum ceruloplasmin, a new genetic polymorphism, Biochem. Genet. 1: 101–115 (1967).Google Scholar
  24. 24.
    Shokeir, M. H. K., and Shrefller, D. C., Two new ceruloplasmin variants in Negroes: Data on three populations, Biochem. Genet. 4: 517–528 (1970).Google Scholar
  25. 25.
    Trip, J. A., Que, G. S., Nanter, Hem, G. K., and Mandema, E., The urinary excretion of ceruloplasmin in patients with proteinuria with special reference to ceruloplasmin fractions, J. Lab. Clin. Med. 75: 403–409 (1970).Google Scholar
  26. 26.
    Shokeir, M. H. K., Investigation on the nature of ceruloplasmin deficiency in the newborn, Clin. Genet. 2: 223–227 (1971).Google Scholar
  27. 27.
    Kellerman, G., and Walter, H., On the population genetics of the ceruloplasmin polymorphism, Humangenetik 15: 84–86 (1972).Google Scholar
  28. 28.
    Walter, H., Kellerman, G., Bajatzadeh, M., Kruger, J., and Chakravartii, M. R., Hp, Gc, Cp, Tf, Bg, and Pi phenotypes in leprosy patients and healthy control from West Bengal (India), Humangenetik 14: 314–325 (1972).Google Scholar
  29. 29.
    Bajatzadeh, M., and Walter, H., Studies on the population genetics of the ceruloplasmin polymorphism, Humangenetik 8: 134–136 (1969).Google Scholar
  30. 30.
    McDermid, E. M., Variants in human serum albumin and caeruloplasmin in populations from Australia, New Guinea, South Africa and India, Aust. J. Biol. Med. Sci. 49: 309–312 (1971).Google Scholar
  31. 31.
    Shokeir, M. H. K., Biochemical and immunological characterization of ceruloplasmin genetic variants: A proposed model for quantitation control, Clin. Genet. 2: 41–49 (1971).Google Scholar
  32. 32.
    Osaki, S., Johnson, D. A., and Frieden, E., The mobilization of iron from the perfused mammalian liver by a serum copper enzyme, ferroxidase I, J. Biol. Chem. 246: 3018–3023 (1971).Google Scholar
  33. 33.
    Al-Timimi, D. J., and Dormandy, T. L., The inhibition of lipid autoxidation by human caeruloplasmin, Biochem. J. 168: 283–288 (1977).Google Scholar
  34. 34.
    Mondóvi, B., Rotilio, G., Costa, M. T., Finazzi-Agro, A., Chiancone, E., Hansen, R. E., and Beinert, H., Diamine oxidase from pig kidney, improved purification and properties, J. Biol. Chem. 242: 1160–1167 (1967).Google Scholar
  35. 35.
    Buffoni, F., and Blashko, H., Benzylamine oxidase and histaminase: Purification and crystallization of an enzyme from pig plasma, Proc. R. Soc. London Ser. B 161: 153–167 (1964).Google Scholar
  36. 36.
    Narayanan, A. S., Siegel, R. C., and Martin, G. R., Stability and purification of lysyl oxidase, Arch. Biochem. Biophys. 162: 231–237 (1974).Google Scholar
  37. 37.
    Chou, W. S., Savage, J. E., and O’Dell, B. L.,Relation of monoamineoxidase activity and collagen crosslinking in copper deficient and control tissues, Proc. Soc. Exp. Biol. Med. 128: 948–952(1968).Google Scholar
  38. 38.
    Gallop, P. M., Blumenfeld, O. O., and Seifter, S., Structure and metabolism of connective tissue proteins, Ann. Rev. Biochem. 41: 617–672 (1972).Google Scholar
  39. 39.
    Broman, L., Chromatographic and magnetic studies on human ceruloplasmin, Acta Soc. Med. Upsal. 69, suppl. 7: 1–85 (1964).Google Scholar
  40. 40.
    Nair, P. M., and Mason, H. S., Reconstitution of cytochrome c oxidase from a copper-depleted enzyme and Cu, J. Biol. Chem. 242: 1406–1415 (1967).Google Scholar
  41. 41.
    Rydén, L., and Deutsch, H., Preparation and properties of the major copper binding component in human fetal liver, J. Biol. Chem. 253: 519–524 (1978).Google Scholar
  42. 42.
    Evans, G. W., Dunbois, R. S., and Hambridge, K. M., Wilson’s disease: Identification of an abnormal copper-binding protein, Science 181: 1175–1176 (1973).Google Scholar
  43. 43.
    Bühler, R. H., and Kagi, J. H., Human hepatic metallothioneins, FEBS Lett. 39: 229–234 (1974).Google Scholar
  44. 44.
    Friedman, S., and Kaufman, S., 3,4-dihydroxyphenylethylamine-ß-hydroxylase, J. Biol. Chem. 240: 4763–4773 (1965).Google Scholar
  45. 45.
    Mann, T., and Keilin, D., Haemocuprein and hepatocuprein, copper protein compounds of blood and liver in mammals, Proc. R. Soc. London Ser. B 126: 303–315 (1938).Google Scholar
  46. 46.
    Carrico, R. J., and Deutsch, H. F., Isolation of human hepatocuprein and cerebrocuprein: Their identity with erythrocuprein, J. Biol. Chem. 244: 6087–6093 (1969).Google Scholar
  47. 47.
    McCord, J. M., and Fridovich, L., Superoxide dismutase: An enzymic function for erythrocuprein (hemocuprein), J. Biol. Chem. 244: 6049–6055 (1969).Google Scholar
  48. 48.
    Mancini, G., Carbonara, A. O., and Heremans, J. F., Immunochemical quantitation of antigens by single radial immunodiffusion, Int. J. Immunochem. 2: 235–254 (1965).Google Scholar
  49. 49.
    Richterich, R., Temperli, A., and Aebi, H., The heterogeneity of ceruloplasmin: Isolation and characterization of 2 cupro-proteins from human serum, Biochim. Biophys. Acta 56: 240–251 (1962).Google Scholar
  50. 50.
    Scheinberg, I. H., Harris, R. S., Morell, A. G., and Dubin, D., Some aspects of the relation of ceruloplasmin to Wilson’s disease, Neurology (suppl.) 1: 44–51 (1958).Google Scholar
  51. 51.
    Schuller, E., Allinquont, B., Garcia, M., Lefevre, M., Moreno, P., and Tompe, L., Electro-immunodiffusion of cerebrospinal fluid: Determination of C’2-HS, ceruloplasmin, 1A–9C, hemopexin and 7’lg, Clin. Chim. Acta 33: 5–11 (1971).Google Scholar
  52. 52.
    Liotet, S., Study of iron and copper and of their proteins of transport in human tears, Ann. Ocul. 202: 629–635 (1969).Google Scholar
  53. 52a.
    Fischbacher, P. H., and Quinlivan, W. L., Qualitative and quantitative analysis of the proteins in human amniotic fluid, Am. J. Obstet. Gynecol. 108: 1051–1055 (1970).Google Scholar
  54. 53.
    Lorentz, K., Niemann, E., Jaspers, G., and Oltsmanns, D., Enzyme in human bile. II. Enzyme content of liver and gall bladder, Enzymol. Biol. Clin. 10: 528–533 (1969).Google Scholar
  55. 54.
    Matsuda, I., Pearson, T., and Holzmann, N. A., Determination of apoceruloplasmin by radioimmunoassay in nutritional copper deficiency: Menke’s kinky hair syndrome, Wilson’s disease, and umbilical cord blood, Pediatr. Res. 8: 821–824 (1974).Google Scholar
  56. 55.
    Burch, R. E., and Sullivan, J. F., Diagnosis of zinc, copper and manganese abnormalities in man, Med. Clin. North Am. 60: 655–660 (1976).Google Scholar
  57. 56.
    Tasman-Jones, C., Kay, R. G., and Lee, S. P., Zinc and copper deficiency with particular reference to parenteral nutrition, Surg. Ann. 10: 23–53 (1978).Google Scholar
  58. 57.
    Graham, G. C., and Cordano, A., Copper depletion and deficiency in the malnourished infant, Johns Hopkins Med. J. 124: 139–150 (1969).Google Scholar
  59. 58.
    Dunlap, W. M., James, G. W., III, and Hume, D. M., Anaemia and neutropenia caused by copper deficiency, Ann. Intern. Med. 80: 470–476 (1974).Google Scholar
  60. 59.
    DiPaolo, D. V., Kanfer, J. N., and Newberne, P. M., Copper deficiency and the central nervous system. Myelination in the rat: Morphological and biochemical studies, Neuropathol. Exp. Neurol. 33: 226–236 (1974).Google Scholar
  61. 60.
    Everson, G. J., Shrader, R. E., and Wang, T., Chemical and morphological changes in the brains of copper deficient guinea pigs, J. Nutr. 96: 115–125 (1968).Google Scholar
  62. 61.
    Smith, D. W., Weissman, N., and Carnes, W. H., Cardiovascular studies on copper deficient swine. XII. Partial purification of soluble protein resembling elastin, Biochem. Biophys. Res. Commun. 31: 309–315 (1968).Google Scholar
  63. 62.
    Partridge, S. M., Elastin, biosynthesis and structure, Gerontologia 15: 85–100 (1969).Google Scholar
  64. 63.
    Henkin, R. I., Keiser, H. R., Jaffe, I. A., Sternlieb, I., and Scheinberg, I. H., Decreased taste sensitivity after n-penicillamine reversed by copper administration, Lancet 2: 1268–1271 (1967).Google Scholar
  65. 64.
    Vilter, R. W., Bozian, R. C., Hess, E. V., Zellner, D. C., and Petering, H. G., Manifestations of copper deficiency in a patient with systemic sclerosis on intravenous hyperalimentation, N. Engl. J. Med. 291: 188–191 (1974).Google Scholar
  66. 65.
    O’Dell, B. L., Biochemistry of copper, Med. Clin. North Am. 60: 687–703 (1976).Google Scholar
  67. 66.
    O’Dell, B. L., Hardwick, B. C., Reynolds, G., and Savage, J. E., Connective tissue defect resulting from copper deficiency, Proc. Soc. Exp. Biol. Med. 108: 402–405 (1961).Google Scholar
  68. 67.
    Danks, D. M., Cartwright, E., and Stevens, B. J., Menkes’ steely-hair (kinky hair) disease, Lancet 1: 891 (1973).Google Scholar
  69. 68.
    Williams, D. M., Atkin, C. L., Frens, D. B„ and Bray, P. F., Menkes’ kinky hair syndrome: Studies of copper metabolism and long term copper therapy, Pediatr. Res. 11: 823–826 (1977).Google Scholar
  70. 69.
    Danks, D. M., Campbell, P. E., Steven, B. J., Mayne, V., and Cartwright, E., Menkes’ kinky hair syndrome: An inherited defect in copper absorption with widespread effects, Pediatrics 50: 188–201 (1972).Google Scholar
  71. 70.
    Danks, D. M., Campbell, P. E., Walker-Smith, J., Stevens, B. J., Gillespie, J. M., Bloomfield, J., and Turner, B., Menkes’ kinky hair syndrome, Lancet 1: 1100–1103 (1972).Google Scholar
  72. 71.
    O’Dell, B. L., Smith, R. M., and King, R. A., Brain catecholamines and copper deficiency ataxia in lambs, Fed. Proc. 33: 668 (1974).Google Scholar
  73. 72.
    Blomfield, J., and MacMahon, R., Microdetermination of plasma and erythrocyte copper by atomic absorption spectrophotometry, J. Clin. Pathol. 22: 136–143 (1969).Google Scholar
  74. 73.
    Sass-Kortsak, A., Cherniak, M., Geiger, D., and Slater, R., Observations on ceruloplasmin in Wilson’s disease, J. Clin. Invest. 38: 1672–1678 (1959).Google Scholar
  75. 74.
    Natelson, S., Leighton, D. R., and Calas, C., Assay for the elements chromium, manganese, iron, cobalt, copper and zinc simultaneously in human serum and sea water by X-ray spectrometry, Mircochem. J. 6: 539–556 (1962).Google Scholar
  76. 75.
    Cordano, A., Placko, R. P., and Graham, G. G., Hypocupremia and neutropenia in copper deficiency, Blood 28: 280–283 (1966).Google Scholar
  77. 76.
    Gallan, J. L., and Deller, D. J., Studies of the nature and excretion of biliary copper in man, Clin. Sci. 44: 9–15 (1973).Google Scholar
  78. 77.
    McCullars, G. M., O’Reilly, S., and Brennan, M., Pigment binding of copper in human bile, Clin. Chim. Acta 74: 33–38 (1977).Google Scholar
  79. 78.
    Hill, R., Copper toxicity, Br. Vet. J. 133: 219–224 (1977).Google Scholar
  80. 79.
    Chuttani, H. K., Gupta, P. S., Gulati, S., and Gupta, D. N., Acute copper sulfate poisoning, Am. J. Med. 39: 849–854 (1965).Google Scholar
  81. 80.
    Scheinberg, I. H., The effects of heredity and environment on copper metabolism, Med. Clin. North Am. 60: 705–712 (1976).Google Scholar
  82. 81.
    Fairbanks, V. F., Copper sulfate-induced hemolytic anemia: Inhibition of glucose-6-phosphate dehydrogenase and other possible mechanisms, Arch. Intern. Med. 120: 428–432 (1967).Google Scholar
  83. 82.
    Ritland, S., Steinnes, E., and Skrede, S., Hepatic copper content, urinary copper excretion and serum ceruloplasmin in liver disease, Scand. J. Gastroenterol. 12: 81–88 (1977).Google Scholar
  84. 83.
    Fleming, C. R., Dickson, E. R., Wahner, H. W., Hollenhorst, R. W., and McCall, J. T., Pigmented corneal rings in non-Wilsonian liver disease, Ann. Intern. Med. 86: 285–288 (1977).Google Scholar
  85. 84.
    Owen, C. A., Dickson, E. R., Goldstein, N. P., Baggenstoss, A. H., and McCall, J. T., Hepatic subcellular distribution of copper in primary biliary cirrhosis: Comparison with other hyperhepatocupric states and review of the literature, Mayo Clin. Proc. 52: 73–79 (1977).Google Scholar
  86. 85.
    Fleming, C. R., Dickson, E. R., Baggenstoss, A. H., and McCall, J. T., Copper and primary biliary cirrhosis, Gastroenterology 67: 1182–1187 (1974).Google Scholar
  87. 86.
    Wilson, S. A. K., Progressive lenticular degeneration: A familial nervous disease associated with cirrhosis of the liver, Brain 34: 295–509 (1912).Google Scholar
  88. 87.
    Beam, A. G., Wilson’s disease: An inborn error of metabolism with multiple manifestations, Am. J. Med. 22: 747–757 (1957).Google Scholar
  89. 88.
    Roche-Sicot, J., and Benhamon, J-P., Acute intravascular hemolysis and acute liver failure associated as a first manifestation of Wilson’s disease, Ann. Intern. Med. 86: 301–303 (1977).Google Scholar
  90. 89.
    Franklin, E. C., and Bauman, A., Liver dysfunction in hepatolenticular degeneration: A review of eleven cases, Am. J. Med. 15: 450–458 (1953).Google Scholar
  91. 90.
    Chalmers, T. C., Iber, F. L., and Uzman, L. L., Hepatolenticular degeneration (Wilson’s disease) as a form of idiopathic cirrhosis, New Engl. J. Med. 256: 235–242 (1957).Google Scholar
  92. 91.
    Scheinberg, I. H., Sternlieb, I., and Richman, J., Psychiatric manifestations in patients with Wilson’s disease, Birth Defects, Orig. Article Ser. 4: 85–87 (1968).Google Scholar
  93. 92.
    McIntyre, N., Clink, H. M., Levy, A. J., Cumings, J. W., and Sherlock, S., Hemolytic anemia in Wilson’s disease, New Engl. J. Med. 276: 439 444 (1967).Google Scholar
  94. 93.
    Holtzman, N. A., Naughton, M. A., Iber, F. L., and Gaumnitz, B. M., Ceruloplasmin in Wilson’s disease, J. Clin. Invest. 46: 993–1002 (1967).Google Scholar
  95. 94.
    Frommer, D. J., Direct measurement of serum non-caeruloplasmin copper in liver disease, Clin. Chim. Acta 68: 303–307 (1976).Google Scholar
  96. 95.
    Delves, H. T., The microdetermination of copper in plasma fractions, Clin. Chim. Acta 71: 495–500 (1976).Google Scholar
  97. 96.
    Reynolds, E. S., Tannen, R. L., and Tyler, H. R., The renal lesion in Wilson’s disease, Am. J. Med. 40: 518–527 (1966).Google Scholar
  98. 97.
    Beam, A. G., Yu, T. F., and Gutman, A. B., Renal function in Wilson’s disease, J. Clin. Invest. 36: 1107–1114 (1957).Google Scholar
  99. 98.
    Beam, A. G., and Kunkel, H. G., Metabolic studies in Wilson’s disease using Cu64, J. Lab. Clin. Med. 45: 623–631 (1955).Google Scholar
  100. 99.
    Sass-Kortsak, A., Copper metabolism, Adv. Clin. Chem. 8: 1–67 (1965).Google Scholar
  101. 100.
    Cox, D. W., Fraser, F. C., and Sass-Kortsak, A., A genetic study of Wilson’s disease: Evidence for heterogeneity, Am. J. Hum. Genet. 24: 646–666 (1972).Google Scholar
  102. 101.
    Walshe, J. M., Copper chelation in patients with Wilson’s disease: A comparison of penicillamine and triethylene tetramine dihydrochloride, Quart. J. Med. 42: 441–452 (1973).Google Scholar
  103. 102.
    Sternliev, I., and Scheinberg, I. H., Penicillamine therapy for hepatolenticular degeneration, JAMA 189: 748–754 (1964).Google Scholar
  104. 103.
    Zimdahl, W. T., Hyman, I., and Stafford, W. F., The effect of drugs upon the copper metabolism in hepatolenticular degeneraton and in normal subjects, J. Lab. Clin. Med. 43: 774–784 (1954).Google Scholar
  105. 104.
    Toaff, R., Toaff, M. E., Peyser, M. R., and Streifler, M., Hepatolenticular degeneration (Wilson’s disease) and pregnancy, Obstet. Gynecol. Survey 32: 497–507 (1977).Google Scholar
  106. 105.
    Karpel, J. T., and Peden, V. H., Copper deficiency in long term parenteral nutrition, J. Pediat. 80: 32–36 (1972).Google Scholar
  107. Viter, R. W., Bozian, R. C., Hess, E. V., et al,Manifestations of copper deficiency in a patient with systemic sclerosis on intravenous hyperalimentation, N. Engl. J. Med. 291: 188–191(1974).Google Scholar
  108. 107.
    Fleming, C. R., Hodges, R. E., and Hurley, H. S., A prospective study of serum copper and zinc levels in patients receiving total parenteral alimentation, Am. J. Clin. Nutr. 29: 70–77 (1976).Google Scholar
  109. 108.
    Hunt, D. M., A study of copper treatment and tissue copper levels in murine congenital copper deficiency, mottled, Eng. Life Sci. 19: 1913–1919 (1976).Google Scholar
  110. Hirano, A., et al,Anterior horn cell changes in a case of neurolathyrism, Acta Neuropathol. (Berlin) 35: 277–283 (1976).Google Scholar
  111. 110.
    Savage, J. E., Bird, D. W., Reynolds, G., and O’Dell, B. L., Comparison of copper deficiency and lathyrism in turkey poults, J. Nutr. 88: 15–25 (1966).Google Scholar
  112. 111.
    Butler, C., Madden, J. W., Davis, W. M., and Peacick, E. E., Morphologic aspects of experimental lye strictures. II. Effect ofsteroid hormones, bougienage and induced lathyrism on acute lye burns, Surgery 81: 431–435 (1977).Google Scholar
  113. 112.
    Henry, R. J., Chiamori, N., Jacobs, S. L., and Segalove, M., Determination of ceruloplasmin oxidase in serum, Proc. Soc. Exp. Biol. Med. 104: 620–624 (1960).Google Scholar
  114. 113.
    Linder, M. C., Iron and copper metabolism in cancer, as exemplified by changes in ferritin and ceruloplasmin in rats with transplantable tumors, Adv. Exp. Med. Biol. 92: 643–664 (1977).Google Scholar
  115. 114.
    Thorling, E. B., and Thorling, K., The clinical usefulness of serum copper determinations in Hodgkins disease: A retrospective study of 241 patients from 1963–1973, Cancer 38: 225–231 (1976).Google Scholar
  116. 115.
    Lewis, R. A., Hultquist, D. E., Baker, B. L., Falls, H. F., Gershowitz, H., and Penner, J. A., Hypercupremia associated with a monoclonal immunoglobulin, J. Lab. Clin. Med. 88: 375–388 (1976).Google Scholar
  117. 116.
    Stratigos, J., Kasimatis, B., Panas, F., and Capetanakis, J., Copper and ceruloplasmin in serum of psoriatic patients, Ann. Dermatol. Syphiligr. (Paris) 103: 584–587 (1976).Google Scholar
  118. 117.
    Deutsch, H. F., A chromatographic-spectrophotometric method for the determination of ceruloplasmin, Clin. Chim. Acta 5: 460–463 (1960).Google Scholar
  119. 118.
    Stark, G. R., and Dawson, C. R., Spectrophotometric microdetermination of copper in copper oxidases using oxalyldihydrazide, Anal. Chem. 30: 191–194 (1958).Google Scholar
  120. 119.
    Zak, B., Simple procedure for the single sample determination of serum copper and iron, Clin. Chim. Acta 3: 328–334 (1958).Google Scholar
  121. 120.
    Eden, A., and Green, H. H., Microdetermination of copper in biological material, Biochem. J. 34: 1202–1208 (1940).Google Scholar
  122. 121.
    Parker, M. M., Humoller, F. L., and Mahler, D. J., Determination of copper and zinc in biological material, Clin. Chem. 13: 40–48 (1967).Google Scholar
  123. 122.
    Massa, E., An overview of lathyrism (in English), Ria. Neurobiol. 18: 181–206 (1976).Google Scholar
  124. 123.
    Schilling, E. D., and Strong, F. M., Isolation structure and synthesis of a lathyrus factor from Lathyrus ordoratus, J. Am. Chem. Soc. 76: 2848 (1954).Google Scholar
  125. 124.
    Ressler, C., Isolation and identification from common vetch of the neuro-toxin beta-cyano-L-alanine, a possible factor in neurolathyrism, J. Biol. Chem. 237: 733–735 (1962).Google Scholar
  126. 125.
    Smith, D. J., and Shuster, R. C., Biochemistry of lathyrism. I. Collagen biosynthesis in normal and lathyritic chick embryos, Arch. Biochem. Biophys. 98: 498–501 (1962).Google Scholar
  127. 126.
    Sharma, D. N., Lathyrism the old and new concepts, J. Indian Med. Assoc. 36: 299–304 (1961).Google Scholar
  128. 127.
    Dasler, W., Isolation of toxic crystals from sweet peas (lathyrus odoratus), Science 120: 307–308 (1954).Google Scholar
  129. 128.
    Prasad, L. S., Spastic paraplegia in lathyriasis, Paraplegia 10: 256–261 (1973).Google Scholar
  130. 129.
    Weaver, A. L., and Spittell, J. A., Lathyrism, Mayo Clin. Proc. 39: 485–489 (1964).Google Scholar
  131. 130.
    Striefler, M., Hirano, A., and Schusman, E., The central nervous system in a case of neurolathyrism, Neurology 27: 1176–1178 (1977).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Samuel Natelson
    • 1
  • Ethan A. Natelson
    • 2
  1. 1.Department of Environmental Practice, College of Veterinary MedicineUniversity of TennesseeKnoxvilleUSA
  2. 2.University of Texas Medical School and St. Joseph HospitalHoustonUSA

Personalised recommendations