Transferrin: Iron Metabolism

  • Samuel Natelson
  • Ethan A. Natelson


By their very nature all plasma proteins will tend to bind anions and cations and various types of organic compounds. Almost every type of bond, including primary and secondary valences and Van der Waals forces are employed for this purpose. Thus there are polar bonds, such as in salt formation with anions or cations, since proteins are amphoteric in nature. With semipolar bonds chelate formation occurs, especially when binding metal ions. Hydrogen bonding is common since the oxygen on the carbonyl group and the nitrogen of the amide both will bind protons. Insertion of hydrocarbon portions of a molecule into a hydrophobic pocket formed in a protein fold is common. This is used in treating proteins with dodecyl sulfate so as to provide a uniform electrical charge for all proteins, in acrylamide gel electrophoresis.


Iron Deficiency Serum Ferritin Iron Overload Iron Deficiency Anemia Serum Iron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Reading

  1. Leibman, A., and Aisen, P., Distribution of iron between the binding sites of transferrin in serum: Methods and results in normal human subjects, Blood 53: 1058–1065 (1979).Google Scholar
  2. Jacobs, A., and Worwood, M., Eds., Iron in Biochemistry and Medicine, Academic Press, New York (1974).Google Scholar
  3. Crichton, R. R., Ed., Proteins of Iron Storage and Transport in Biochemistry and Medicine, North Holland, Amsterdam (1975).Google Scholar
  4. Putnam, F. W., Transferrin, in The Plasma Proteins, Vol. I, F. W. Putnam, Ed., Academic Press, New York (1975), pp. 265–316.Google Scholar
  5. Giblett, E. R., Transferrin, in Physiological Pharmacology, Vol. I, W. S. Root, and N. I. Berlin, Eds., Academic Press, New York (1974), pp. 555–568.Google Scholar
  6. Morton, A. G., and Tavill, A. S., The role of iron in the regulation of hepatic transferrin synthesis, Br. J. Haematol. 36: 383–344 (1977).Google Scholar
  7. Hershko, C., Storage iron regulation, Progr. Hematol. 10: 105–148 (1977).Google Scholar
  8. Linder, M. C., and Munro, H. N., The mechanism of iron absorption and its regulation, Fed. Proc. 36: 2017–2023 (1977).Google Scholar
  9. Haurani, F. I., and Meyer, A., Iron and the reticuloendothelial system. Adv. Exp. Med. Biol. 73: 171–871 (1976).Google Scholar
  10. Giblett, E. R., Genetic Markers in Human Blood, Blackwell, Oxford (1969).Google Scholar
  11. Brown, E. B., Transferrin: Physiology and function in iron transport, Ciba Found. Symp. 51: 125–143 (1976).Google Scholar
  12. Harrison, P. M., Ferritin: An iron storage molecule, Semin. Hematol. 14: 55–70 (1977).Google Scholar
  13. Jacobs, A., Serum ferritin and iron stores, Fed. Proc. 36:2024–2027 (1977).Google Scholar
  14. Ellis, D., Serum ferritin compared with other indices of iron status in children and teenagers undergoing maintenance hemodialysis, Clin. Chem. 25: 741–744 (1979).Google Scholar
  15. Brown, E. B., et al., Eds., Proteins of Iron Metabolism, Grune and Stratton, New York (1977). .Google Scholar
  16. Worwood, M., Serum ferritin, CRC Crit. Rev. Clin. Lab. Sci. 10: 171–204 (1979).Google Scholar


  1. 1.
    Palmour, R. M., and Sutton, H. E., Vertebrate transferrins: Molecular weights, chemical composition and iron binding studies, Biochemistry 10: 4026–4032 (1971).Google Scholar
  2. 2.
    Schade, A. L., Reinhart, R., and Levy, H., Carbon dioxide and oxygen in complex formation with iron and siderophilin, the iron binding component of blood, Arch. Biochem. Biophys. 20: 170–172 (1949).Google Scholar
  3. 3.
    Koechlin, B. A., Preparation and properties of serum and plasma proteins, XXVIII. The ß1-metal-combining protein of human plasma, J. Am. Chem. Soc. 74: 2649–2656 (1952).Google Scholar
  4. 4.
    Olesen, H., and Terp, B., Transferrin determination by Laurell electrophoresis in antibody containing agarose gel., Scand. J. Clin. Lab. Invest. 21: 14–16 (1968).Google Scholar
  5. 5.
    Aisen, P., and Brown, E. B., The iron-binding function of transferrin in iron metabolism, Semin. Hematol. 14: 31–53 (1977).Google Scholar
  6. 6.
    Klein, B., Lucas, L. B., and Searcy, R. L., Application of Fe (II)-5-Pyridyl Benzodiazepin-2-ones to the determination of serum iron and iron binding capacity, Clin. Chim. Acta 26: 517–523 (1969).Google Scholar
  7. 7.
    Makey, D. G., and Seal, U. S., The detection of four molecular forms of human transferrin during the iron binding process, Biochim. Biophys. Acta 453: 250–256 (1976).Google Scholar
  8. 8.
    Sutton, M. R., MacGillivray, R. T., and Brew, K., The amino acid sequences of three cystine-free cyanogen-bromide fragments of human serum transferrin, Eur. J. Biochem. 51: 43–48 (1975).Google Scholar
  9. 9.
    Jamieson, G. A., Jett, M., and DeBernardo, S., The carbohydrate sequence of the glycopeptide chains of human transferrin, J. Biol. Chem. 246: 3686–3693 (1971).Google Scholar
  10. 10.
    Dorland, L., Haverkamp, J., Schut, B. L., and Vliegenthart, J. F., The structure of the asialo-carbohydrate units of human serotransferrin as proven by 360 MHZ proton magnetic resonance spectroscopy, Febs. Lett. 77: 15–20 (1977).Google Scholar
  11. 11.
    Parker, W. C., and Beam, A. G., Studies on the transferrin of adult serum, cord serum, and cerebrospinal fluid, J. Exp. Med. 115: 83–105 (1962).Google Scholar
  12. 12.
    Parker, W. C., Hagstrom, J. W., and Beam, A. G., Additional studies on the transferrins of cord serum and cerebrospinal fluid, J. Exp. Med. 118: 975–989 (1963).Google Scholar
  13. 13.
    Williams, J., The formation of iron binding fragments of hen ovotransferrin by limited proteolysis, Biochem. J. 141: 745–752 (1974).Google Scholar
  14. 14.
    Aisen, P., and Leibman, A., Lactoferrin and transferrin: A comparative study, Biochim. Biophys. Acta 257: 314–323 (1972).Google Scholar
  15. 15.
    Masson, P. L., and Heremans, J. F., Lactoferrins in milk from different species, Comp. Biochem. Physiol. 39B: 119–129 (1971).Google Scholar
  16. 15.
    Brown, E. M., Transferrin iron binding sites, Blood 50: 1151–1153 (1977).Google Scholar
  17. 16.
    Smithies, O., and Hiller, P., The genetic control of transferrin in humans, Biochem. J. 72: 121–126 (1959).Google Scholar
  18. 17.
    Roop, W. E., and Putnam, F. W., Purification and properties of human transferrin C and slow moving genetic variant, J. Biol. Chem. 242: 2507–2513 (1967).Google Scholar
  19. 18.
    Giblett, E. R., Transferrin, in Physiological Pharmacology, W. S. Root and N. I. Berlin, Eds., Academic Press, New York (1974).Google Scholar
  20. 19.
    Bowman, B. H., Serum transferrin, Ser. Haematol. 1: 97–110 (1968).Google Scholar
  21. 20.
    Howard, P. N., Wang, A. C., and Sutton, H. E., Transferrin Dchi: The amino acid substitution, Biochem. Genet. 2: 265–269 (1968).Google Scholar
  22. 21.
    Wang, A. C., Sutton, H. E., Human transferrins C and D: Chemical difference in a peptide, Science 149: 435–437 (1965).Google Scholar
  23. 22.
    Wang, A. C., Sutton, H. E., and Scott, I. D., Transferrin D: Identity in Australian aborigines and American Negroes, Science 156: 936–937 (1967).Google Scholar
  24. 22a.
    Pootrakul, P., Christensen, A., Josephson, B., and Finch, C. A., Role of transferrin in determining internal iron distribution, Blood 49: 957–966 (1977).Google Scholar
  25. 23.
    Kirk, R. L., The world distribution of transferrin variants and some unsolved problems, Acta Genet. Med. Gemellol. 17: 613–640 (1968).Google Scholar
  26. 24.
    Schade, A. L., Serum siderophilin: (transferrin) and eccrinosiderophilin (lactoferrin) as non-specific microbiostatic agents in human health and disease: Clinical implications, Wien. Klin. Wochenschr. 39: 361–366 (1977).Google Scholar
  27. 25.
    Schultz, A., Sasaki, M., and Natelson, S., Comparison of the ribonucleotide with the canavanine reductase system, Soc. Exp. Biol. Med. 45: 884–888 (1974).Google Scholar
  28. 25a.
    Takahara, K., Nakanishi, S., and Natelson, S., Studies on the reductive cleavage of canavanine and canavaninosuccinic acid, Arch. Biochem. Biophys. 145: 85–95 (1971).Google Scholar
  29. 26.
    Fletcher, J., The effect of iron and transferrin on the killing of Escherichia coli in fresh serum, Immunology 20: 493–500 (1971).Google Scholar
  30. 27.
    Weinberg, E. D., Infection and iron metabolism, Am. J. Clin. Nutr. 39: 1485–1490 (1977).Google Scholar
  31. 27.
    Goya, N., Miyazaki, S., Kodate, S., and Ushio, B., A family of congenital atransferrinemia, Blood 40: 239–245 (1972).Google Scholar
  32. 28.
    Awai, M., and Brown, E. B., Studies of the metabolism of I131 labelled human transferrin, J. Lab. Clin. Med. 61: 363–396 (1963).Google Scholar
  33. 29.
    Wochner, R. D., Weissman, S. M., Waldman, T. A., Houston, D., and Berlin, N. I., Direct measurement of the rates of synthesis of plasma proteins in control subjects and patients with gastrointenstinal protein loss, J. Clin. Invest. 47: 197–982 (1968).Google Scholar
  34. 30.
    Morton, A. G., and Tavill, A. S., The role of iron in the regulation of hepatic transferrin synthesis, Br. J. Haematol. 36: 383–394 (1977).Google Scholar
  35. 30a.
    Bannerman, R. M., Genetic defects of iron transport, Fed. Proc. 35: 2281–2285 (1976).Google Scholar
  36. 31.
    Osaki, S., Johnson, D. A., and Frieden, E., The mobilization of iron from the perfused mammalian liver by a serum copper enzyme, ferroxidase, J. Biol. Chem. 246: 3018–3023 (1971).Google Scholar
  37. 32.
    Fischbach, F. A., Gregory, D. W., and Harrison, P. M., et al., On the structure of hemosiderin and its relationship to ferritin, J. Ultrastruct. Res. 37:495–503 (1971).Google Scholar
  38. 33.
    Worwood, M., Dawkins, S., and Wagstaff, M., et al., The purification and properties of ferritin from human serum, Biochem. J. 157:97–103 (1976).Google Scholar
  39. 34.
    Harrison, P. M., Hoy, T. G., and Macara, I. G., et al., Ferritin uptake and release: Structure function relationships, Biochem. J., 143:445–451 (1974).Google Scholar
  40. 35.
    Linder, M. C., and Munro, H. N., The mechanism of iron absorption and its regulation, Fed. Proc. 36: 2017–2023 (1977).Google Scholar
  41. 36.
    Lloyd, D. A., and Valberg, L. S., Serum ferritin and body iron status after gastric operations, Am. J. Dig. Dis. 22: 598–604 (1977).Google Scholar
  42. 37.
    Martinez-Torres, C., Renzi, M., and Layrisse, M., Iron absorption by humans from hemosiderin and ferritin: Further studies, J. Nutr. 106: 128–135 (1976).Google Scholar
  43. 38.
    Lanzkowsky, P., Iron matabolism in the newborn infant, Clin. Endocrinol. Metabol. 5: 149–174 (1976).Google Scholar
  44. 39.
    Haurani, F. I., and Meyer, A., Iron and the reticuloendothelial system, Ada. Exp. Med. Biol. 73: 171–187 (1976).Google Scholar
  45. 40.
    Kalis, S. G., and Morgan, E. H., Iron uptake by immature erythroid cells: Mechanism of dependence on metabolic energy, Biochim. Biophys. Acta 462: 389–398 (1977).Google Scholar
  46. 41.
    Hershko, C., The fate of circulating haemoglobin, Br. J. Haematol. 29: 199–204 (1975).Google Scholar
  47. 42.
    Tenhunen, R., The enzymatic degradation of heme, Semin. Hematol. 9: 19–29 (1972).Google Scholar
  48. 43.
    Schade, S. G., and Fried, W., The utilization of senescent red cell and hemolysate iron for erythropoiesis, Proc. Soc. Exp. Biol. Med. 151: 78–83 (1976).Google Scholar
  49. 44.
    Sly, D., Grohlich, D., and Bezkorovainy, A., Transferrin in the reticulocyte cytosol, Biochim. Biophys. Acta 385: 36–40 (1975).Google Scholar
  50. 44.
    Sullivan, A. L., Grasso, J. A., and Weintraub, L. R., Micropinocytosis of transferrin by developing red cells: An electron-microscopic study utilizing ferritin conjugated antibodies to transferrin, Blood, 47: 133–143 (1976).Google Scholar
  51. 45.
    Harrison, P. M., and Gregory, D. W., Reassembly of apoferritin molecules from subunits, Nature 220: 578–580 (1968).Google Scholar
  52. 46.
    Bryce, C. F. A., and Crichton, R. R., The subunit structure of horse spleen apoferritin: The molecular weights of the subunits, J. Biol. Chem. 246: 4798–4805 (1971).Google Scholar
  53. 47.
    Fischbach, F. A., and Anderegy, J. W., An x-ray scattering study of ferritin and apoferritin, J. Mol. Biol. 143: 458–473 (1965).Google Scholar
  54. 48.
    Crichton, R. R., Millar, J. A., Cummin, R. L. C., and Bryce, C. F. A., The organ-specificity of ferritin in human and horse liver and spleen, Biochem. J. 131: 51–59 (1973).Google Scholar
  55. 49.
    Crichton, R. R., Structure and function of ferritin, Angew. Chem. 12: 57–65 (1973).Google Scholar
  56. 50.
    Hoare, R. J., Harrison, P. M., and Hoy, T. G., Structure of horse-spleen apoferritin at six angstrom resolution, Nature 255: 653–654 (1975).Google Scholar
  57. 51.
    Ishitani, K., Niitsu, Y., and Listowsky, I., Differences in subunit composition and iron content of isoferritins, J. Biol. Chem. 250: 3142–3148 (1975).Google Scholar
  58. 52.
    Drysdale, J. W., Microheterogeneity of ferritin molecules, Biochim. Biophys. Acta 412: 148–156 (1975).Google Scholar
  59. 53.
    Lee, J. C. R., and Richter, G. W., Ferritin from different organs of man, rat, rabbit and pig, Comp. Biochem. Physiol. 39b: 325–333 (1971).Google Scholar
  60. 54.
    Lee, J. C. R., and Richter, G. W., Ferritin from different organs of man, rat, rabbit and pig, Comp. Biochem. Physiol. 39b: 325–333 (1971).Google Scholar
  61. 55.
    Adelman, F. G., Ariso, P., and Drysdale, W., Multiple subunits in human ferritins: Evidence for hybrid molecules, Biochem. Biophys. Res. Commun. 63: 1056–1062 (1975).Google Scholar
  62. 56.
    Harrison, P. M., Hoy, T. G., Macara, I. G., and Hoare, R. J., Ferritin iron uptake and release, Structure-function relationships, Biochem. J. 143: 445–451 (1974).Google Scholar
  63. 57.
    Granick, S., Ferritin: Its properties and significance for iron metabolism, Chem. Rev. 38: 379–403 (1946).Google Scholar
  64. 58.
    Frieden, E., and Osaki, S., Ferroxidases and ferrireductases: Their role in iron metabolism, Ado. Exp. Med. Biol. 48: 235–265 (1974).Google Scholar
  65. 59.
    Mazur, A., and Carleton, A., Hepatic xanthine oxidase and ferritin iron in the developing rat, Blood 26: 317–322 (1965).Google Scholar
  66. 60.
    Lipschitz, D. A., Bothwell, T. H., Seftel, H. C., et al., The role of ascorbic acid in the metabolism of storage iron, Br. J. Haematol. 20: 155–163 (1971).Google Scholar
  67. 61.
    Lipschitz, D. A., Bothwell, T. H., Seftel, H. C., et al., The role of ascorbic acid in the metabolism of storage iron, Br. J. Haematol. 20: 155–163 (1971).Google Scholar
  68. 62.
    Munro, H. N., Iron absorption and nutrition, Fed. Proc. 36: 2015–2016 (1977).Google Scholar
  69. 63.
    Beveridge, B. R., Bannerman, R. M., Evanson, J. M., and Witts, L. J., Hypochromic anaemia: A retrospective study and follow-up of 378 in patients, Quart. J. Med. 34: 145–161 (1965).Google Scholar
  70. 64.
    Hyams, L., and Philpot, J., An epidemiological investigation of hemorrhoids, Am. J. Proctol. 21: 177–193 (1970).Google Scholar
  71. 64.
    Roche, M. and Layrisse, M., The nature and causes of hookworm anemia, Am. J. Trop. Med. Hyg. 15: 1031–1100 (1966).Google Scholar
  72. 65.
    Karpatkin, S., Garg, S. K., and Freedman, M. L., Role of iron as a regulator of thrombopoiesis, Am. J. Med. 57: 521–525 (1974).Google Scholar
  73. 66.
    Finch, C. A., Cook, J. D., Labbe, R. F., and Culala, M., Effect of blood donation on iron stores as evaluated by serum ferritin, Blood 50: 441–447 (1977).Google Scholar
  74. 67.
    Salter, R. H., Aspirin and gastrointestinal bleeding, Am. J. Dig. Dis. 13: 38–58 (1968).Google Scholar
  75. 68.
    DeGowin, R. L., Sorensen, L. B., Charleston, D. B., Gottschalk, A., and Greenwald, J. H., Retention of radioiron in the lungs of a woman with idiopathic pulmonary hemosiderosis, Ann. Int. Med. 69: 1213–1220 (1968).Google Scholar
  76. 69.
    Bernard, J., Najean, Y., Alby, N., and Rain, Jean-Didier, The hypochromic anemias due to voluntarily provoked hemorrhages, Presse Med. 75: 2087–2090 (1967).Google Scholar
  77. 70.
    Pollitt, E., and Leibel, R. L., Iron deficiency and behavior, J. Pediatr. 88: 372381 (1976).Google Scholar
  78. 71.
    Layrisse, M., Roche, M., and Baker, S. J., Nutritional anaemias, WHO Monogr. Ser. 62:55–82 (19 76).Google Scholar
  79. 72.
    World Health Organization, Tech. Rep. Ser. No. 405, Geneva (1968).Google Scholar
  80. 73.
    Hines, J. D., Hoffbrand, A. V., and Mollin, D. L., The hematologic complications following partial gastrectomy, Am. J. Med. 43: 555–569 (1967).Google Scholar
  81. 74.
    Kilpatrick, Z. M., and Katz, J., Occult celiac disease as a cause of iron deficiency anemia JAMA 208: 999–1001 (1969).Google Scholar
  82. 75.
    McMillan, J. A., Landaw, S. A., and Oski, F. A., Sufficiency in breast-fed infants and the availability of iron from human milk, Pediatrics 58: 686–691 (1976).Google Scholar
  83. 75.
    Woodruff, C. W., Iron deficiency in infancy and childhood, Pediatr. Clin. North Am. 24: 85–94 (1977).Google Scholar
  84. 76.
    Committee on Nutrition: iron balance and requirements in infancy, Pediatrics 43:134–142 (1969).Google Scholar
  85. 76.
    Woodruff, C. W., Iron deficiency in infancy and childhood, Pediatr. Clin. North Am. 24: 85–94 (1977).Google Scholar
  86. 76.
    Saarinen, U. M., Siimes, M. A., and Dallman, P. R., Iron absorption in infants: High bioavailability of breast milk iron as indicated by the extrinsic tag method of iron absorption and by the concentration of serum ferritin, J. Pediatr. 91: 36–39 (1977).Google Scholar
  87. 77.
    Vardi, P., Placental transfusion, Lancet 2: 12–13 (1965).Google Scholar
  88. 78.
    Committee on Iron Deficiency, AMA council on foods and nutrition: Iron deficiency in the United States, JAMA 203: 407–412 (1968).Google Scholar
  89. 79.
    Guha, D. K., Walia, B. N., Tandon, B. N., Deom, G., and Ghai, O. P., Small bowel changes in iron-deficiency anemia of childhood, Arch. Dis. Child. 43: 239–244 (1968).Google Scholar
  90. 80.
    DeLeeuw, N. K. M., Lowenstein, L., and Hsieh, Yang-Shu, Iron deficiency and hydremia in normal pregnancy, Medicine 45: 291–315 (1966).Google Scholar
  91. 81.
    Haurani, F. I., and Meyer, A., Iron and the reticuloendothelial system, Adv. Exp. Med. Biol. 73: 171–187 (1976).Google Scholar
  92. 82.
    Cartwright, G. E., The anemia of chronic disorders, Semin. Hematol. 3: 351–375 (1966).Google Scholar
  93. 83.
    Haurani, F. I., and Green, D., Primary defective iron reutilization: Response to testosterone therapy, Am. J. Med. 42: 151–158 (1967).Google Scholar
  94. 84.
    Kanakakorn, K., Cavill, I., and Jacobs, A., The metabolism of intravenously administered iron-dextran, Br. J. Haematol. 25: 637–643 (1973).Google Scholar
  95. 85.
    Hume, R., Dagg, J. H., and Goldberg, A., Refractory anemia with dysproteinemia: Long-term therapy with low-dose corticosteroids, Blood 41: 27–35 (1973).Google Scholar
  96. 86.
    Heilmeyer, L., Keller, W., Vivell, O., Keiderling, W., Betje, K., Wohler, F., and Schultze, H. E., Congenital atransferritinemia in a seven year old child, Dtsch. Med. Wochenschr. 86: 1745–1751 (1961).Google Scholar
  97. 87.
    Cap, J., Lehotskâ, V., and Mayerova, A., Congenital atransferrinemia, Cesk. Pediat. 23: 1020–1025 (1968).Google Scholar
  98. 90.
    Goya, N. M., Yazaki, M., Kodate, S., et al., A family of congenital atransferrinemia, Blood 40:239–245 (1972).Google Scholar
  99. 89.
    Loperena, L., Dorantes, S., Medrano, E., et al., Atransferrinemia hereditaria, Bol. Med. Hosp. Infant. Mex. 31:519–535 (1974)..Google Scholar
  100. 90.
    Sakata, T., A case of congenital atransferrenemia, Shonika Shinryo 32: 1523–1529 (1969).Google Scholar
  101. 91.
    Barry, M., Iron overload: Clinical aspects evaluation and treatment, Clin. Haematol. 2: 405–426 (1973).Google Scholar
  102. 92.
    Jacobs, A., Iron overload-clinical and pathologic aspects, Semin. Hematol. 14: 89–113 (1977).Google Scholar
  103. 93.
    O’Brien, R. T., Iron overload: Clinical and pathologic aspects in pediatrics, Semin. Hematol. 14: 115–125 (1977).Google Scholar
  104. 94.
    MacDonald, R. A., and Mallory, G. K., Hemachromatosis and hemosiderous: Study of 211 autopsied cases, Arch. Internl Med. 105: 686–700 (1960).Google Scholar
  105. 95.
    Grace, N. D., and Powell, L. W., Iron storage disorders of the liver, Gastroenterology 67: 1257–1283 (1974).Google Scholar
  106. 96.
    Walters, G. O., Jacobs, A., Worwood, M., Trevett, D., and Thomson, W., Iron absorption in normal subjects and patients with idopathic haemochromatosis: Relationship with serum ferritin concentration, Gut 16: 188–192 (1975).Google Scholar
  107. 97.
    Finch, S. C., and Finch, C. A., Idiopathic hemochromatosis: An iron storage disease, Medicine 34: 381–390 (1955).Google Scholar
  108. 98.
    Powell, L. W., and Kerr, J. F. R., Reversal of “cirrhosis” in idopathic haemochromatosis following long term intensive venesection therapy, Australas. Ann. Med. 19: 54–57 (1970).Google Scholar
  109. 99.
    Bannerman, R. M., Genetic defects of iron transport, Fed. Proc. 35: 2281–2285 (1976).Google Scholar
  110. 100.
    Wickramasinghe, S. N., Fulker, M. J., Losowsky, M. S., and Hall, R., Microspectrophotometric and electronmicroscopic studies of bone marrow in hereditary sideroblastic anaemia, Acta Haematol. 45: 236–244 (1971).Google Scholar
  111. 101.
    Eichner, E. R., and Hillman, R. S., The evolution of anemia in alcoholic patients, Am. J. Med. 50: 218–232 (1971).Google Scholar
  112. 102.
    Williams, R., Williams, H. S., Scheuer, P. J., Pitcher, C. S., Loiseau, E., and Sherlock, S., Iron absorption and siderosis in chronic liver disease, Q. J. Med. 36: 151–166 (1967).Google Scholar
  113. 103.
    Greenberg, M. S., and Grace, N. D., Folic acid deficiency and iron overload, Arch. Intern. Med. 125: 140–144 (1970).Google Scholar
  114. 104.
    Bourne, M. S., Elves, M. W., and Israels, M. C., Familial pyridoxine-responsive anaemia, Br. J. Haematol. 11: 1–10 (1965).Google Scholar
  115. 105.
    Losowsky, M. S., and Hall, R., Hereditary sideroblastic anaemia, Br. J. Haematol. 11: 70–85 (1965).Google Scholar
  116. 106.
    Westerhausen, M., and Meuret, G., Transferrin-immune complex disease, Acta Haematol. 57: 96–101 (1977).Google Scholar
  117. 107.
    Felsher, B. F., and Kushner, J. P., Hepatic siderosis and porphyria cutanea tarda: Relation of iron excess to the metabolic defect, Semin. Hematol. 14: 243–251 (1977).Google Scholar
  118. 108.
    Bainton, D. F., and Finch, C. A., The diagnosis of iron deficiency anemia, Am. J. Med. 37: 62–70 (1964).Google Scholar
  119. 109.
    Moe, P. J., The diagnosis of iron deficiency anemia in children, Acta Paediatr. Scand. 58: 141–146 (1969).Google Scholar
  120. 110.
    Tsung, S. H., Rosenthal, W. A., and Milewski, K. A., Immunological measurement of transferrin compared with chemical measurement of total iron-binding capacity, Clin. Chem. 21: 1063–1066 (1975).Google Scholar
  121. 111.
    Fahey, J. L., and McKelvey, E. M., Quantitative determination of serum immunoglobulins in antibody agar plates, J. Immunol. 94: 84–90 (1965).Google Scholar
  122. 112.
    Douglas, A. S., and Dacie, J. V., The incidence and significance of iron containing granules in human erythrocytes and their precursors, J. Clin. Pathol. 6: 307–313 (1953).Google Scholar
  123. 113.
    Mollin, D. L., Sideroblasts and sideroblastic anemia, Br. J. Haematol. 11: 4148 (1965).Google Scholar
  124. 114.
    Harker, L. A., Funk, D. D., and Finch, C. A., Evaluation of storage iron by chelates, Am. J. Med. 45: 105–115 (1968).Google Scholar
  125. 115.
    Burks, J. M., Siimes, M. A., Mentzer, W. C., and Dallman, P. R., Iron deficiency in an Eskimo village: The value of serum ferritin in assessing iron nutrition before and after a three-month period of iron supplementation, J. Pediatr. 88: 224–228 (1976).Google Scholar
  126. 116.
    Heinrich, H. C., Bruggemann, J., Gabbe, E. E., and Glaser, M., Correlation between diagnostic 59Fe2+-absorption and serum ferritin concentration in man, Z. Naturforsch. 32: 1023–1025 (1977).Google Scholar
  127. 117.
    Dempster, W. S., Steyn, D. L., Knight, G. J., and Heese, H., Immunoradiometric assay of serum ferritin as a practical method for evaluating iron stores in infants and children, Med. Lab. Sci. 34: 337–344 (1977).Google Scholar
  128. 118.
    Lipschitz, D. A., Cook, T. D., and Finch, C. A., A clinical evaluation of serum ferritin as an index of iron stores, N. Engl. J. Med. 290: 1213–1216 (1974).Google Scholar
  129. 119.
    Addison, G. M., Beamich, M. R., Hales, C. N., Hodgkinf, M., Jacobs, A., Llewellin, P., An immunoradiometric assay for ferritin in the serum of normal subjects and patients with iron deficiency and iron overload, J. Clin. Pathol. 25: 326–329 (1972).Google Scholar
  130. 119.
    Eshhar, J., Order, S. E., and Katz, D. H., Ferritin, a Hodgkin’s disease associated antigen, Proc. Natl. Acad. Sci. 71: 3956–3960 (1974).Google Scholar
  131. 120.
    Dagg, J. H., Goldberg, A., and Lochhead, A., Value of erythrocyte protoporphyrin in the diagnosis of latent iron deficiency, Br. J. Haematol. 12: 326–330 (1966).Google Scholar
  132. 121.
    Valberg, L. S., Sorbie, J., Corbett, W. E. N., and Ludwig, J., Cobalt test for the detection of iron deficiency anemia, Ann. Intern. Med. 77: 181–187 (1972).Google Scholar
  133. 122.
    Callender, S. T., Oral iron therapy, Br. J. Haematol. 18: 123–125 (1970).Google Scholar
  134. 123.
    Wallerstein, R. O., Intravenous iron-dextran complex, Blood 32: 690–695 (1968).Google Scholar
  135. 124.
    Barry, M., Iron overload, Clinical aspects evaluation and treatment, Clin. Haematol. 2: 405–426 (1973).Google Scholar
  136. 125.
    Grady, R. W., The development of new drugs for use in iron chelation therapy, Birth Defects 12: 161–175 (1976).Google Scholar
  137. 126.
    Nienhuis, A. W., Delea, C., Adamodt, R., Bartter, F., and Anderson, W. F., Evaluation of desferrioxamine and ascorbic acid for the treatment of chronic iron overload, Birth Defects 12: 177–185 (1976).Google Scholar
  138. 127.
    Propper, R. D., Shurin, S. B., and Nathan, D. G., Reassessment of the use of desferrioxamine B in iron overload, N. Engl. J. Med. 294: 1421–1423 (1976).Google Scholar
  139. 130.
    Fahey, J. L., Rath, C. E., Princiotto, J. V., et al., Evaluation of trisodium calcium diethylene-triaminepentaacetate in iron storage disease, J. Lab. Clin. Med. 57: 436–449 (1961).Google Scholar
  140. 129.
    Peterson, C. M., Graziano, J. H., Grady, R. W., et al., Chelation studies with 2,3 dihydroxybenzoic acid in patients with thalassaemia major, Br. J. Haematol. 33: 477-485 (1976).Google Scholar
  141. 130.
    Modell, C. B., and Beck, J., Long-term desferrioxamine therapy in thalassemia, Ann. N.Y. Acad. Sci. 232: 201–210 (1974).Google Scholar
  142. 131.
    Groc, W., Jendrey, M., and Lahn, W., Simultaneous identification of the transferrin peak on the crossed pherogram of the cerebrospinal fluid by means of standard human transferrin and the rocket technique of Laurell, Clin. Chim. Acta 54: 65–68 (1974).Google Scholar
  143. 132.
    Weeke, B., Carbamylated human transferrin used as a reference in the Laurell crossed electrophoresis, Scand. J. Clin. Lab. Invest. 25: 161–163 (1970).Google Scholar
  144. 133.
    Eckman, I., Robbins, J. B., Van Der Hamer, C. J. A., Lentz, J., and Scheinberg, I. H., Automation of a quatitative immunochemical microanalysis of human serum transferrin, Clin. Chem. 16: 558–561 (1970).Google Scholar
  145. 134.
    Kreutzer, H. J. H., An immunological tubidimetric method for serum transferrin determination, J. Clin. Chem. Clin. Biochem. 14: 401–406 (1976).Google Scholar
  146. 135.
    Fischl, J., Serum iron determination using direct color extraction, Clin. Chim. Acta 5: 164–170 (1960).Google Scholar
  147. 136.
    Caraway, W. T., Macro and micro methods for the determination of serum iron and iron binding capacity, Clin. Chem. 9: 188–199 (1963).Google Scholar
  148. 137.
    Saarinen, U. M., and Siimes, M. A., Developmental changes in serum iron, total iron binding capacity and transferrin, J. Pediatr. 91: 875–877 (1977).Google Scholar
  149. 138.
    Olson, A. D., and Hamlin, W. B., A new method for serum iron and total iron binding capacity by atomic absorption spectrometry, Clin. Chem. 15: 438444 (1969).Google Scholar
  150. 139.
    Natelson, S., Leighton, D. R., and Calas, C., Assay for the elements chromium, manganese, iron, cobalt, copper, and zinc simultaneously in human serum and sea water by X-ray spectrometry. Microchem. J. 6: 539–556 (1962).Google Scholar
  151. 140.
    Marcus, D. M., and Zinberg, N., Measurement of serum ferritin by radio-immunoassay: Results in normal individuals and patients with breast cancer, J. Natl. Cancer Inst. 55: 791–795 (1975).Google Scholar
  152. 141.
    Prieto, J., Barry, M., and Sherlock, S., Serum ferritin in patients with iron overload and with acute and chronic liver diseases, Gastroenterology 68: 525–533 (1975).Google Scholar
  153. 142.
    Luxton, A. W., Walker, W. H. C., Gauldie, J., Ali, M. A. M., and Pelletier, C., A radioimmunoassay for serum ferritin, Clin. Chem. 23: 683–689 (1977).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Samuel Natelson
    • 1
  • Ethan A. Natelson
    • 2
  1. 1.Department of Environmental Practice, College of Veterinary MedicineUniversity of TennesseeKnoxvilleUSA
  2. 2.University of Texas Medical School and St. Joseph HospitalHoustonUSA

Personalised recommendations