Glycoproteins and Proteoglycans

  • Samuel Natelson
  • Ethan A. Natelson


A glycoprotein is defined as a protein or polypeptide to which a carbohydrate is attached by a covalent bond. These conjugated proteins are of major biological importance, comprising enzymes, hormones, antibodies, membranes, and the ground substance of every cell. They include not only most of the soluble globulins of the plasma, but insoluble proteins of connective tissue and the lubricant secretions of the various organs of the bodies, the mucoproteins.


Hyaluronic Acid Sialic Acid Heparan Sulfate Blood Group Chondroitin Sulfate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Reading

  1. Walborg, E. F., Jr., Ed., Glycoproteins and Glycolipids in Disease Processes, Amer. Chem. Soc. Pub., Washington, D.C. (1978).Google Scholar
  2. Gottschalk, A., Glycoproteins, Their Composition, Structure and Function. 2nd ed., Parts A and B (2 vols.), Elsevier, New York (1972).Google Scholar
  3. Horowitz, M. I., and Pigman, W., Eds., Mammalian Glycoproteins and Glycolipids, Academic Press, New York (1977), Vol. II (1978).Google Scholar
  4. Jamieson, G. A., and Greenwalt, T. J., Glycoproteins of Blood Cells and Plasma, Lippincott, Philadelphia (1971).Google Scholar
  5. Rossi, E., and Stoll, E., Eds., Biochemistry of Glycoproteins and Related Substances, Part II, S. Karger, New York (1968).Google Scholar
  6. Musil, Jan., Glycoproteins and Their Relationship to Connective Tissue, Praha University Press, Prague (1975).Google Scholar
  7. Smellie, R. M. S., and Beeley, J. G., Eds., Metabolism and Function of Glycoproteins, Biochem. Soc. Publication, London (1974).Google Scholar
  8. Elstein, M., and Parke, D. V., Eds., Mucus in Health and Disease, Plenum Press, New York (1977).Google Scholar
  9. Race, R. R., and Sanger, R., Blood Groups in Man, 6th ed. Blackwell, London (1975).Google Scholar
  10. Matthews, M. B., Connective Tissue—Macromolecular Structure and Evolution, Springer Verlag, Berlin (1975).Google Scholar
  11. Burleigh, P. M. C., and Poole, A. R., Eds., Dynamics of Connective Tissue Macromolecules, North-Holland, Cambridge (1974).Google Scholar
  12. Hall, D. A., and Jackson, D. S., International Review of Connective Tissue Research, Academic Press, New York (1976).Google Scholar
  13. Soetano, K., Alpha fetoprotein: A review, J. Invest. Dermatol. 72: 211–213 (1979).CrossRefGoogle Scholar

Review Articles

  1. Phelps, C. F., Biosynthesis of mucus glycoprotein, Br. Med. Bull. 34: 43–48 (1978).Google Scholar
  2. Jones, R., and Reid, L., Secretory cells and their glycoproteins in health and disease, Br. Med. Bull. 34: 9–16 (1978).Google Scholar
  3. Boat, T. F., and Cheng, P. W., Mucous glycoproteins, in Cystic Fibrosis: Projections into the Future, J. A. Mangos, and R. C. Talamo, Eds., Stratton, New York (1976), pp. 165–177.Google Scholar
  4. Sturgess, J. M., and Moscarello, M. A., Alterations in the Golgi complex and glycoprotein biosynthesis in normal and diseased tissues, Pathobiol. Annu. 6: 1–29 (1976).Google Scholar
  5. Hemming, F. W., The role of polyprenol-linked sugars in eukaryotic macro-molecular synthesis, Biochem. Soc. Trans. 5: 1682–1687 (1977).Google Scholar
  6. Bacchus, H., Serum glycoproteins and malignant neoplastic disorders, CRC. Crit. Rev. Clin. Lab. Sci. 8: 333–362 (1977).CrossRefGoogle Scholar
  7. Wolf, G., Retinol-linked sugars in glycoprotein synthesis, Nutr. Rev. 35: 97–99 (1977).CrossRefGoogle Scholar
  8. Hemming, F. W., Dolichol phosphate, a coenzyme in the glycosylation of animal membrane-bound glycoproteins, Biochem. Soc. Trans. 5: 1223–1231 (1977).Google Scholar
  9. Nurden, A. T., and Caen, J. P., Membrane glycoproteins and human platelet function, Br. J. Haematol. 38: 155–160 (1978).CrossRefGoogle Scholar
  10. Richter, D., and Isono, K., The mechanism of protein synthesis—initiation, elongation, and termination in translation of genetic messages, Curr. Top. Microbiol. Immunol. 76: 83–125 (1977).CrossRefGoogle Scholar
  11. Kenner, G. W., Towards synthesis of proteins, Proc. Biochem., Soc., London, B, 197: 237–253 (1977).CrossRefGoogle Scholar
  12. Waechter, C. J., and Lennarz, W. J., The role of polyprenol-linked sugars in glycoprotein synthesis, Annu. Rev. Biochem. 45: 95–112 (1976).CrossRefGoogle Scholar
  13. McKusick, V. A., Neufeld, E., and Kelly, T. E., The mucopolysaccharide storage diseases, in Metabolic Basis of Inherited Disease, J. B. Stanbury, J. B. Wyngarden, and D. S. Fredrickson, Eds., McGraw-Hill, New York (1978), pp. 1282–1306.Google Scholar
  14. Allen, A., Structure of gastrointestinal mucus glycoproteins and the viscous and gel-forming properties of mucus, Brit. Med. Bull. 34: 28–33 (1978).Google Scholar
  15. Parodi, A. J., and Leloir, L. F., Recent advances in the study of membrane bound saccharides, Biomedicine 28: 9–13 (1978).Google Scholar
  16. Lindahl, U., and Höök, M., Glycosamino-glycans and their binding to biological macromolecules, Ann. Rev. Biochem. 47: 385–417 (1978).CrossRefGoogle Scholar
  17. Morré, D. J., Mollenhauer, H. H., and Bracker, C. E., Origin and continuity of Golgi apparatus, in Origin and Continuity of Cell Organelles, W. Beerman, J. Reinert, and H. Urspring, Eds., Springer Verlag, New York (1971).Google Scholar
  18. Schiffman, G., and Marcus, D. M., Chemistry of the ABH blood group substances, Prog. Hematol. 4: 97–116 (1964).Google Scholar
  19. Von Uhlenbruck, G., Haupt, H., Reese, I., and Steinhausen, G., Serum cholinesterase as a model of the glycoproteins, J. Clin. Chem. Biochem. 15: 561–564 (1977).Google Scholar
  20. Moczar, M., and Moczar, E., Glycoproteins from the aorta, Pathologie-Biologie 26: 63–71 (1978).Google Scholar
  21. Kennedy, J. F., Chemical and biochemical aspects of the glycosaminoglycans and proteoglycans in health and disease, in Advances of Clinical Chemistry, O. Bodansky, and A. L. Latner, Eds., Vol. 8, Academic Press, New York (1976), pp. 1–101.Google Scholar
  22. Neufeld, E. F., Lim, T. W., and Shapiro, L. J., Inherited disorders of lysosomal metabolism, Ann. Rev. Biochem. 44: 357–376 (1975).CrossRefGoogle Scholar
  23. Dorfman, A., and Matalon, R., The mucopolysaccharidoses (a review), Proc. Natl. Acad. Sci. 73: 630–637 (1976).CrossRefGoogle Scholar
  24. Muir, H., Structure and function of proteoglycans of cartilage and cell—matrix interactions, in Cell and Tissue Interactions, J. W. Lash and M. M. Burger, Eds., Raven Press, New York (1977).Google Scholar
  25. Kottgen, E., Bauer, A., Reutter, W., and Gerok, W., Glycoproteins: Their biological and clinical significance, Klin. Wochenschr. 57: 151–159 (1979).CrossRefGoogle Scholar
  26. Perin, J. P., Bonner, F., and Jolles, P., Comparative studies on human and bovine nasal cartilage proteoglycan complex components, Mol. Cell. Biochem. 21: 71–82 (1978).CrossRefGoogle Scholar


  1. 1.
    Moczar, E., and Moczar, M., New micromethod for the study of the structure of the glucidic fraction of the glycoproteins, Bull. Soc. Chim. Biol. 49: 1159–1163 (1967).Google Scholar
  2. 2.
    Menini, E., Falholt, W., and Lous, P., Seromucoid and protein-bound hexoses in serum. I. Methods for their routine determination in the clinical laboratory, Acta Med. Scand. 160: 315–322 (1958).CrossRefGoogle Scholar
  3. 3.
    Winzler, R. J., and Smyth, I. M., Studies of the muco-proteins of human plasma. II. Plasma mucoprotein levels in cancer patients, J. Clin. Invest. 27: 617–619 (1948).CrossRefGoogle Scholar
  4. 4.
    Kelsey, R. L., de Graffenried, T. P., and Donaldson, R. C., Electrophoretic fractionation of serum glycoproteins on cellulose acetate, Clin. Chem. 11: 1058–1063 (1965).Google Scholar
  5. 5.
    Van Neerbos, R. R., and Devries-Lequin, I., Electrophoresis of glycoproteins with special regard to periodic acid-Schiff staining, Clin. Chim. Acta. 26: 271–276 (1969).CrossRefGoogle Scholar
  6. 6.
    Neuberger, A., Gottschalk, A., and Marshall, R. D., Carbohydrate-peptide linkages in glycoproteins and methods for their elucidation, in Glycoproteins, A. Gottschalk, Ed., Elsevier, New York (1966), pp. 273–293.Google Scholar
  7. 7.
    Stary, Z., Mucoproteins in clinical chemistry, Clin. Chem. 3: 557–576 (1957).Google Scholar
  8. 8.
    Reid, K. B., A collagen-like amino acid sequence in a polypeptide chain of human Clq (a subcomponent of the first component of complement), Biochem. J. 141: 189–203 (1974).Google Scholar
  9. 9.
    Nakada, H., and Yamashina, I., Release of glycopeptides and monopolysaccharides from ascites hepatoma cells by tryptic treatment, J. Biol. Chem. (Tokyo) 83: 79–83 (1978).Google Scholar
  10. 10.
    Yamashina, I., Ban-I, K., and Makino, M., The protein-polysaccharide linkage in ovalbumin, Biochim. Biophys. Acta 78: 382–384 (1963).CrossRefGoogle Scholar
  11. 11.
    Rothfus, J. A., and Smith, E. L., Glycopeptides. IV. The periodate oxidation of glycopeptides from y-globulin, J. Biol. Chem. 238: 1402–1410 (1963).Google Scholar
  12. 12.
    Plummer, T. H., Jr., and Hirs, C. H. W., On the structure of bovine pancreatic ribonuclease B.: Isolation of a glycopeptide, J. Biol. Chem. 239: 2530–2539 (1964).Google Scholar
  13. 13.
    Catley, B. J., Moore, S., and Stein, W. H., The carbohydrate moiety of bovine pancreatic deoxyribonuclease, J. Biol. Chem. 244: 933–936 (1969).Google Scholar
  14. 14.
    Spiro, R. G., Studies on fetuin, a glycoprotein of fetal serum. II. Nature of the carbohydrate units, J. Biol. Chem. 237: 382–388 (1962).Google Scholar
  15. 15.
    Spiro, R. G., The carbohydrate units of thyroglobulin, J. Biol. Chem. 240: 1603–1610 (1965).Google Scholar
  16. 16.
    Montgomery, R., and Wu, Y. C., The carbohydrate of ovomucoid: Isolation of glycopeptides and the carbohydrate-protein linkage, J. Biol. Chem. 238 3547–3554 (1963).Google Scholar
  17. 17.
    Carubelli, R., Bhavanandan, P., and Gottschalk, A., Studies on glycoproteins. XI. The 0-glycosidic linkage of N-acetylgalactosamine to seryl and threonyl residues in ovine submaxillary gland glycoprotein, Biochim. Biophys. Acta 101: 67–82 (1965).Google Scholar
  18. 18.
    Lloyd, K. O., and Kabat, E. A., Immunochemical studies on blood groups. XLI. Proposed structures for the carbohydrate portions of blood groups A, B, H, Lewis-a and Lewis-b, Proc. Natl. Acad. Sci. 61: 1470–1477 (1968).CrossRefGoogle Scholar
  19. 19.
    Spiro, R. G., and Fukushi, S., The lens capsule: Studies on the carbohydrate units, J. Biol. Chem. 244: 2049–2058 (1969).Google Scholar
  20. 20.
    Spiro, R. G., Characterization and quantitative determination of the hydroxylysine-linked carbohydrate units of several collagens, J. Biol. Chem. 244: 602–612 (1969).Google Scholar
  21. 21.
    Tarentino, A., Plummer, T. H., Jr., and Maley, F., Studies on the oligosaccharide sequence of ribonuclease B, J. Biol. Chem. 245: 4150–4157 (1970).Google Scholar
  22. 22.
    Rydén, L., and Eaker, D., The amino-acid sequences of three tryptic glycopeptides from human ceruloplasmin, Eur. J. Biochem. 44: 171–180 (1974).CrossRefGoogle Scholar
  23. 23.
    Schmid, K., Ishiguro, M., Emura, J., Isemura, S., Kaufmann, H., and Motoyama, T., The amino acid sequences of two large glycopeptides derived from the carbohydrate carrying region of al-acid glycoprotein, Biochem. Biophys. Res. Commun. 42: 280–286 (1971).CrossRefGoogle Scholar
  24. 24.
    Charet, P., and Montreuil, J., Studies on the glycoproteins: Study of peptide sequences of two glycopeptides isolated by chymotryptic hydrolysis of human transferrin, Comfit. Rend. Acad. Sci. Ser. D. 273: 533–536 (1971).Google Scholar
  25. 25.
    Putnam, F. W., Florent, G., Paul, C., Shinoda, T., and Shimizu, A., Complete amino acid sequence of the Mu heavy chain of a human IgM immunoglobulin, Science 182: 287–291 (1973).CrossRefGoogle Scholar
  26. 26.
    Marshall, R. D., Glycoproteins, Ann. Rev. Biochem. 41: 673–702 (1972).CrossRefGoogle Scholar
  27. 27.
    Patel, V., Glycosidases in glycoprotein metabolism, in Glycoprotein of Blood Cells and Plasma, G. A. Jamieson, and T. J. Greenwalt, Eds., Lippincott, Philadelphia (1971), pp. 133–163.Google Scholar
  28. 28.
    Kroon, A. M., de Vries, H., and Nÿhof, W., Protein synthesis in heart mito-chondria: Mechanism and metabolic aspects, Acta Cardiologica 31: 1–13 (1976).Google Scholar
  29. 29.
    Spiro, R. G., Glycoproteins: Their biochemistry, biology and role in human disease, New Engl. J. Med. 281: 991–1001 (1969).CrossRefGoogle Scholar
  30. 30.
    Phelps, C. A., Biosynthesis of mucus glycoproteins, Brit. Med. Bull. 34: 43–48 (1978).Google Scholar
  31. 31.
    Kono, M., Yamashina, I., Identification of asparagine as the site of glycosylation in glycoprotein biosynthesis, J. Biochem. (Tokyo) 73: 1089–1094 (1973).Google Scholar
  32. 32.
    Kenner, G. W., Towards synthesis of proteins, Proc. Biochem. Soc., London, B. 197: 237–253 (1977).CrossRefGoogle Scholar
  33. 33.
    Richter, D. and Isono, K., The mechanism of protein synthesis-initiation, elongation and termination in translation of genetic messages, Curr. Top. Microbiol. Immunol. 76: 83–125 (1977).CrossRefGoogle Scholar
  34. 34.
    Beams, H. W., and Kessel, R. G., The Golgi apparatus, structure and function, Int. Rev. Cytol. 23: 209–276 (1968).CrossRefGoogle Scholar
  35. 35.
    Morré, D. J., Mollenhauer, H. H., and Bracker, C. E., Origin and continuity of Golgi apparatus, in Origin and Continuity of Cell Organelles, W. Beerman, and J. Reinert, Eds., Springer-Verlag, New York (1971).Google Scholar
  36. 36.
    Sturgess, J. M., Katona, E., and Moscarello, M. A., The Golgi Complex. I. Isolation and ultrastructure in normal rat liver, J. Membr. Biol. 12: 367–384 (1973).CrossRefGoogle Scholar
  37. 37.
    Northcote, D. H., The Golgi apparatus, Endeavour 30: 26–33 (1971).Google Scholar
  38. 38.
    Whaley, W. G., The Golgi apparatus, in The Biological Basis of Medicine, Vol. I, E. E. Bittar, and N. Bittar, Eds., Academic Press (1968), pp. 179–208.Google Scholar
  39. 39.
    Hemming, F. W., The roles of polyprenol-linked sugars in eukaryotic macro-molecular synthesis, Biochem. Soc. Trans. 5: 1682–1687 (1977).Google Scholar
  40. 40.
    Hemming, F. W., Dolichol phosphate, a coenzyme in glycosylation of animal membrane-bound glycoproteins, Biochem. Soc. Trans. 5: 1223–1231 (1977).Google Scholar
  41. 41.
    Wolf, G., Retinol sugars in glycoprotein synthesis, Nutrition Reviews 35: 253–254 (1977).Google Scholar
  42. 42.
    Retinol-binding protein in man and rat, Nutrition Reviews 35: 253–254 (1977).Google Scholar
  43. 43.
    Warren, L., The biosynthesis and metabolism of amino sugars and aminosugar-containing heterosaccharides, in Glycoproteins, Part B, A. Gottschalk, Ed., Elsevier, New York (1972).Google Scholar
  44. 44.
    Spiro, M. J., Spiro, R. G., and Bhoyroo, V. D., Lipid-saccharide intermediates in glycoprotein biosynthesis. II. Composition of oligosaccharide-lipids formed by slices from several tissues, J. Biol. Chem. 251: 6420–6425 (1976).Google Scholar
  45. 45.
    Spiro, M. J., Spiro, R. G., and Bhoyroo, V. D., Lipid-saccharide intermediates in glycoprotein biosynthesis. I. Formation of an oligosaccharide-lipid by thyroid slices and evaluation of its role in protein glycosylation, J. Biol. Chem. 251: 6400–6408 (1976).Google Scholar
  46. 46.
    Hersovics, A. Golovtchenko, A. M., Warren, C. D., Bugge, B., and Jeanloz, R. W., Mannosyltransferase activity in calf pancreas microsomes: Formation of [14C]-labeled lipid-linked oligosaccharides from GDP-n-[14C] mannose and pancreatic dolichyl beta-n-[14C] mannopyranosyl phosphate, J. Biol. Chem. 252: 224–234 (1977).Google Scholar
  47. 47.
    Waechter, C. J., and Lennarz, W. J., The role of polyprenol-linked sugars in glycoprotein synthesis, Ann. Rev. Biochem. 45: 95–112 (1976).CrossRefGoogle Scholar
  48. 47a.
    Wolf, G., Kiorpes, T. C., Masushige, S., Schreiber, J. B., Smith, M. J., and Anderson, R. S., Recent evidence for the participation of vitamin A in glycoprotein synthesis, Fed. Proc. 38: 2540–2543 (1979).Google Scholar
  49. 47b.
    DeLuca, L. M., Pangala, V. B., Wlodzimierz, S., and Adamo, S., Biosynthesis of phosphoryl and glycosyl phosphoryl derivatives of vitamin A in biological membranes, Fed. Proc. 38: 2535–2539 (1979).Google Scholar
  50. 48.
    Spik, G., Fournet, B., Stecker, G., Bouquelet, S., and Montreuil, J., Studies on glycoconjugates. LXIV. Complete structure of two carbohydrate units of human serotransferrin, FEBS Lett. 50: 296–299 (1975).Google Scholar
  51. 49.
    Jamieson, G. A., Jett, M., and De Bernardo, S. L., The carbohydrate sequence of the glycopeptide chains of human transferrin, J. Biol. Chem. 246: 3688–3693 (1975).Google Scholar
  52. 50.
    Williams, J., Iron binding fragments from the carboxyl terminal region of hen ovotransferrin, Biochem. J. 149: 237–244 (1971).Google Scholar
  53. 51.
    Baenziger, J., Kornfeld, S., and Kochwa, S., Structure of the carbohydrate units of IgE immunoglobulins, J. Biol. Chem. 249: 1897–1903 (1974).Google Scholar
  54. 52.
    Dawson, G., and Clamp, J. R., Investigations on the oligosaccharide unit of an A myeloma globulin, Biochem. J. 107: 341–352 (1968).Google Scholar
  55. Hickman, S., Kornfeld, G., Osterland, C. K., and Kornfeld, S., The structure of the glycopeptides of a human y M-immunoglobulin, J. Biol. Chem. 247: 2156–2163 (1972).Google Scholar
  56. 54.
    Tai, T., Katsuko, Y., Midori, O., Norio, K., et al., Structural studies of two ovalbumin glycopeptides in relation to the endo-ß-N-acetylglucosaminidase specificity, J. Biol. Chem. 250: 8569–8575 (1975).Google Scholar
  57. 55.
    Ito, S., Yamashita, K., Spiro, R. G., and Kobata, A., Structure of a carbohydrate moiety of a unit A glycopeptide of calf thyroglobulin, J. Biol. Chem. (Japan) 81: 1621–1631 (1977).Google Scholar
  58. 56.
    Spiro, M. J., Presence of a glucuronic acid-containing carbohydrate unit in human thyroglobulin, J. Biol. Chem. 252: 5424–5430 (1977).Google Scholar
  59. 57.
    Hallgren, P., Lundblad, A. and Svensson, S., A new type of carbohydrate-protein linkage in a glycopeptide from normal human urine, J. Biol. Chem. 250: 5312–5314 (1975).Google Scholar
  60. 58.
    Chan, S. K. and Rees, D. C., Linear structure of the oligosaccharide chains in a,-protease inhibitor isolated from human plasma, J. Biol. Chem. 261: 471–476 (1976).Google Scholar
  61. 59.
    Marchesi, V. T., Some molecular features of integral membrane proteins, in The Molecular Basis of Cell-Cell Interaction, R. A. Lerner, and D. Bergsma, Eds., Alan R. Liss, New York (1978), pp. 127–138.Google Scholar
  62. 60.
    Schachter, H., Glycoprotein biosynthesis, in The Glycoconjugates, M. Horowitz, and W. Pigman, Eds., Vol. 2. Academic Press, New York (1978).Google Scholar
  63. 60a.
    Dodd, M. C., Bigley, N. J., Johnson, G. A., and McCluer, R. H., Chemical aspects of inhibitors of Rho (D) antibody, Nature 204: 549–552 (1964).CrossRefGoogle Scholar
  64. 60b.
    Abraham, C. V., and Bakerman, S., Isolation and purification of the Rh (D) blood group receptor component from human erythrocyte membrane, Clin. Chim. Acta 60: 33–43 (1975).CrossRefGoogle Scholar
  65. 61.
    Watkins, W. M., Blood group substances, Science 153: 172–181 (1966).CrossRefGoogle Scholar
  66. 62.
    Feizi, T. Kabat, E. A., Vicari, G., Anderson, B., and Marsh, W. L., Immunochemical studies on blood groups. XLIX. The I antigen complex: Specificity differences among anti-I sera revealed by quantitative precipitin studies, J. Immunol. 106: 1578–1592 (1971).Google Scholar
  67. 63.
    Takasaki, S., Yamashita, K., and Kobata, A., The sugar chain structures of ABO group active glycoproteins obtained from human erythrocyte membrane, J. Biol. Chem. 253: 6086–6089 (1978).Google Scholar
  68. 64.
    Schenkel-Brunner, H., and Tuppy, H., Enzymatic conversion of human O into A erythrocytes and of B into AB erythrocytes, Nature 223: 1272–1273 (1969).CrossRefGoogle Scholar
  69. 64a.
    Nagai, M., Davè, V., Kaplan, B. E., and Yoshida, A., Human blood group glycosyltransferases. I. Purification of N-acetylgalactosylaminyl transferase, J. Biol. Chem. 253: 377–379 (1978).Google Scholar
  70. 65.
    Springer, G. F., Tegtmeyer, H., and Huprikar, S. V., Anti-N reagents in elucidation of the genetical basis of human blood-group MN specificities, Vox Sang. 22: 325–343 (1972).CrossRefGoogle Scholar
  71. 66.
    Springer, G. F., and Desai, P. R., Human blood group MN and precursor specificities: Structural and biological aspects, Carbohydrate Res. 40: 183–192 (1975).Google Scholar
  72. 67.
    Grubb, R., Observation of the human group system Lewis, Acta. Path. Microbiol. Scand. 28: 61–81 (1951).CrossRefGoogle Scholar
  73. 68.
    Sneath, J. S., and Sneath, P. H. A., Transformation of the Lewis groups of human red cells, Nature 176: 172 (1955).CrossRefGoogle Scholar
  74. 69.
    Lombart, C. G., and Winzler, R. F., Isolation and characterization of oligosaccharides from canine submaxillary mucin, Eur. J. Biochem. 49: 77–86 (1974).CrossRefGoogle Scholar
  75. 70.
    Roberts, G. P., Isolation and characterization of glycoproteins from sputum, Eur. J. Biochem. 50: 265–28 (1974).CrossRefGoogle Scholar
  76. 71.
    Creeth, J. M., Bhaskar, K. R., Horton, J., Das, I., Lopez-Vidriero, M. T., and Reid, L., The separation and characterization of bronchial glycoproteins by density-gradient methods, Biochem. J. 167: 557–569 (1977).Google Scholar
  77. 71a.
    Newman, W., and Kabat, E. A., Immunochemical studies on blood groups, Arch. Biochem. Biophys. 172: 510–523 (1976).CrossRefGoogle Scholar
  78. 72.
    Boat, T. F., and Cheng, P. W., Mucous glycoproteins, in Cystic Fibrosis: Projections into the Future, J. A. Mangos, and R. C. Talamo, Eds., Stratton, New York (1976), pp. 165–167.Google Scholar
  79. 73.
    Jones, R., and Reid, L., Secretion cells and their glycoproteins in health and disease, Brit. Med. Bull. 34: 9–16 (1978).Google Scholar
  80. 74.
    Schrager, J., and Oates, M. D. G., The isolation and partial characterization of a glycoprotein isolated from human gastric aspirates and from extracts of gastric mucosa, Biochim. Biophys. Acta 372: 183–195 (1974).CrossRefGoogle Scholar
  81. 75.
    Allen, A., Structure of gastrointestinal mucus glycoproteins and the viscous and gel forming properties of mucus, Brit. Med. Bull. 34: 28–33 (1978).Google Scholar
  82. 76.
    Spiro, R. G., The structure of the disaccharide unit of the renal glomerular basement membrane, J. Biol. Chem. 242: 4813–4823 (1967).Google Scholar
  83. 77.
    Morgan, P. H., Jacobs, H. C., Segrest, J. P., and Cunningham, L. W., A comparative study of glycopeptides derived from selected vertebrate collagens, J. Biol. Chem. 245: 5042–5048 (1970).Google Scholar
  84. 78.
    Maheu, P. M., Lambert, P. H., and Maghuin-Rogister, R. G., Primary structure of a small glycopeptide isolated from human glomerular basement membrane and carrying a major antigenic site, Eur. J. Biochem. 40: 599–606 (1973).CrossRefGoogle Scholar
  85. 79.
    Morell, A. G., Gregoriadis, G., Scheinberg, I. H., Hickman, J., and Ashwell, G., The role of sialic acid in determining the survival of glycoproteins in the circulation, J. Biol. Chem. 246: 1461–1467 (1971).Google Scholar
  86. 80.
    Cuatrecasas, P., Membrane receptors, Ann. Rev. Biochem. 43: 169–214 (1974).CrossRefGoogle Scholar
  87. 81.
    Muramatsu, T., and Mathenson, S. G., Studies on the carbohydrate portion of membrane located H-2 alloantigens, Biochem. 9: 4875–4883 (1971).Google Scholar
  88. 82.
    Plummer, T. H., Jr., and Hirs, C. H. W., The isolation of ribonuclease B, a glycoprotein from bovine pancreatic juice, J. Biol. Chem. 238: 1396–1401 (1963).Google Scholar
  89. 83.
    Tanner, M. J., and Anstee, D. J., The membrane change in En(a-) human erythrocytes: Absence of the major erythrocyte sialoglycoprotein, Biochem. J. 153:271-277 (1976).Google Scholar
  90. 84.
    Furuhjelm, U., Nevanlinna, H. R., and Pirkola, A., A second Finnish En(a-) propositus with anti-En a, Vox Sang. 24: 545–549 (1973).CrossRefGoogle Scholar
  91. 85.
    Shur, B. D., and Roth, S., Cell surface glycosyl transferases, Biochim. Biophys. Acta 415: 473–512 (1975).Google Scholar
  92. 86.
    Parodi, A. J., and Leloir, L. F., Recent advances in the study of membrane bound saccharides, Biomedicine 28: 9–13 (1978).Google Scholar
  93. 86a.
    Hynes, R. O., Ali, I. U., Mautner, V. M., and Destree, A., LETS glycoprotein: Arrangement and function at the cell surface, Birth Defects, 14: 139–153 (1978).Google Scholar
  94. 87.
    Koj, A., Acute phase reactants, in Structure and Function of Plasma Proteins, Vol. I., A. E. Allison, Ed., Plenum, New York (1974).Google Scholar
  95. 88.
    Jett, M., Jamieson, G. A., and DeBernardo, S. L., The carbohydrate sequence of the glycopeptide chains of human transferrin, J. Biol. Chem. 246: 3686–3693 (1971).Google Scholar
  96. 89.
    Koj, A., The measurement of absolute and relative synthesis rates of fibrinogen in vivo, Biochim. Biophys. Acta 165: 97–107 (1968).CrossRefGoogle Scholar
  97. 90.
    Tillett, W. S., and Francis, T., Jr., Serological reactions in pneumonia with non-protein somatic fraction of pneumococcus, J. Exp. Med. 52: 561–571 (1930).CrossRefGoogle Scholar
  98. 91.
    Hedlund, P., Clinical and experimental studies on C-reactive protein (acute phase protein), Acta Med. Scand. 169 (Suppl. 361): 1–71 (1961).Google Scholar
  99. 92.
    Fischer, C. L., Gill, C., Forrester, M. G., and Nakamura, R., Quantitation of acute phase proteins postoperatively: Value in detection and monitoring of complications, Am. J. Clin. Pathol. 66: 840–846 (1976).Google Scholar
  100. 93.
    Crockson, R. A., Payne, C. J., Ratcliff, A. P., and Soothill, J. F., Time sequence of acute phase reactive proteins following surgical trauma, Clin. Chim. Acta 14: 435–441 (1966).CrossRefGoogle Scholar
  101. 94.
    Takahashi, W., Reichert, E. R., Fung, G. C., and Hokama, Y., Acute phase proteins and pesticide exposure, Life Sciences 19: 1645–1652 (1976).CrossRefGoogle Scholar
  102. 95.
    Ward, A. M., Cooper, E. H., and Houghton, A. L., Acute phase reactant proteins in prostatic cancer, Br. J. Urol. 49: 411–418 (1977).CrossRefGoogle Scholar
  103. 96.
    Wiedermann, D., Wiedermann, B., Cidl, K., and Kodouskova, V., Individual serum proteins and acute phase reactants in monoclonal immunoglobulinopathies, Neoplasma 25: 189–196 (1978).Google Scholar
  104. 97.
    Adinolfi, M., and Lehner, T., Acute phase proteins and C9 in patients with Behcet’s syndrome and aphthous ulcers, Clin. Exp. Immunol. 25: 36–39 (1976).Google Scholar
  105. 98.
    Osmand, A. P., Mortensen, R. F., Siegel, J., and Gewurz, H., Interactions of C-reactive protein with the complement serum. III-Complement-dependent passive hemolysis initiated by CRP, J. Exp. Med. 142: 1065–1077 (1975).CrossRefGoogle Scholar
  106. 99.
    Fiedel, B. A., and Gewurz, H., Effects of C-reactive protein on platelet function. II-Inhibition of CRP of platelet reactivities stimulated by poly-Llysine, ADP, epinephrine, and collagen, Immunol. 117: 1073–1078 (1976).Google Scholar
  107. 100.
    Claus, D. R., Osmand, A. P., and Gerwurz, H., Radioimmunoassay of human C-reactive protein and levels in normal sera, J. Lab. Clin. Med. 87: 120–128 (1976).Google Scholar
  108. 101.
    Amos, R. S., Constable, T. J., Crockson, R. A., Crockson, A. P., and McConkey, B., Rheumatoid arthritis: Relation of serum C-reactive protein and erythrocyte sedimentation rates to radiographic changes, Br. Med. J. 1: 195–197 (1977).CrossRefGoogle Scholar
  109. 102.
    Child, J. A., Roberts, B. E., Illingworth, R. S., and Cooper, E. H., Acute phase reactant proteins in chronic leukemia, Biomedicine 27: 188–190 (1977).Google Scholar
  110. 103.
    Winzler, R. J., Devor, A. W., Mehl, J. M., and Smyth, I. M., Studies on mucoproteins of human plasma: Plasma mucoprotein levels in cancer patients, J. Clin. Invest. 27: 609–616 (1948).CrossRefGoogle Scholar
  111. 104.
    Hao, Y. L. and Wickerhauser, M., Development of large-scale fractionation methods. IV. A simple method for the large-scale preparation of al-acid glycoprotein, Biochim. Biophys. Acta 322: 99–109 (1973).Google Scholar
  112. 105.
    Isemura, M., and Schmid, K., Studies on the carbohydrate moiety of al acid glycoprotein (orosomucoid) by using alkaline hydrolysis and deamination by nitrous acid, Biochem. J. 124: 591–604 (1971).Google Scholar
  113. 106.
    Hughes, R. C., and Jeanloz, R. W., The extracellular glycosidases of Diplococcus pneumoniae. I. Purification and properties of a neuraminidase and a ß-galactosidase: Action on the al-acid glycoprotein of human plasma, Biochemistry 3: 1535–1543 (1964).CrossRefGoogle Scholar
  114. 107.
    Schmid, K., Chen, L. H., Occhino, J., Foster, J., and Sperandio, K., Topography of human plasma al-acid glycoprotein, Biochemistry 15: 2245–2254 (1976).CrossRefGoogle Scholar
  115. 108.
    Schwarzmann, G. O. H., Hatcher, V. B., Jeanloz, R. W., and McArthur, J. W., Purification, properties and partial structure elucidation of the highmolecular-weight glycoproteins from cervical mucus of the bonnet monkey (Macaca radiata), Biochem. 16: 1518–1524 (1977).CrossRefGoogle Scholar
  116. 109.
    Spiro, R. G., Glycoproteins, Adv. Protein. Chem. 27: 349–467 (1973).CrossRefGoogle Scholar
  117. 110.
    Schmid, K., Kaufmann, H., Isemura, S., Bauer, F., Emura, J., Motoyama, T., Ishiguro, M., and Nanno, S., Structure of 1-acid glycoprotein: The complete amino acid sequence multiple amino acid substitutions, and homology with the immunoglobulins, Biochemistry 12: 2711–2724 (1973).CrossRefGoogle Scholar
  118. 111.
    Ikenaka, T., Ishiguro, M., Emura, J., Kaufmann, H., Isemura, S., Bauer, W., and Schmid, K., Isolation and partial characterization of the cyanogen bromide fragments of al-acid glycoprotein and the elucidation of the amino acid sequence of the carboxyl-terminal cyanogen bromide fragment, Biochemistry 11: 3817–3829 (1972).CrossRefGoogle Scholar
  119. 112.
    Schmid, K., Bürgi, W., Collins, H., and Nanno, S., The disulfide bonds of al-acid glycoprotein, Biochemistry 13: 2694–2697 (1974).CrossRefGoogle Scholar
  120. 113.
    Jamieson, J. C., Ashton, F. E., Friesen, A. D., and Chou, B., Studies on acute phase proteins of rat serum. II. Determination of the contents of 1-acid glycoprotein 2-macroglobulin, and albumin in serum from rats suffering from induced inflammation, Can. J. Biochem. 50: 871–880 (1972).Google Scholar
  121. 114.
    Adams, J. B., and Wacher, A., Specific changes in the glycoprotein components of seromucoid in pregnancy, Clin. Chim. Acta 21: 155–157 (1968).CrossRefGoogle Scholar
  122. 115.
    Wagh, P. I., Bornstein, I., and Winzler, R. J., The structure of a glycopeptide from human orosomucoid (al-acid glycoprotein), J. Biol. Chem. 214: 658–665 (1969).Google Scholar
  123. 116.
    Sarcione, E. J., Synthesis of a1-acid glycoprotein by the isolated perfused rat liver, Arch. Biochem. Biophys. 100: 516–519 (1963).CrossRefGoogle Scholar
  124. 117.
    Tripodi, D., Weis, J. W., Bonness, P. E., and Pollack, W., Identification of platelet orosomucoid, Transfusion 11: 139–144 (1971).CrossRefGoogle Scholar
  125. 118.
    Jaffe, R., and Deykin, D., Evidence for a structural requirement for the aggregation of platelets by collagen, J. Clin. Invest. 53: 875–883 (1974).CrossRefGoogle Scholar
  126. 119.
    Franzblau, C., Schmid, K., Faris, B., Beldekas, J., Garvin, P., Kagan, H. M., and Baum, B. J., The interaction of collagen with a1-acid glycoprotein, Biochim. Biophysica Acta 427: 302–314 (1976).Google Scholar
  127. 120.
    Jakus, M. A., Studies on the cornea. II. The fine structure of the Descenet’s membrane, J. Biophys. Biochem. Cytol. (Suppl. 4) 2: 243–252 (1966).Google Scholar
  128. 121.
    Ramsey, H. J., Fibrous long-spacing collagen in tumors of the nervous system, J. Neuropathol. Exp. Neurol. 24: 40–47 (1965).CrossRefGoogle Scholar
  129. 122.
    Hilding, D. A., and House, W. F., “Acoustic neuroma”: Comparison of traumatic and neoplastic, J. Ultrastructure Res. 12: 611–623 (1965).CrossRefGoogle Scholar
  130. 123.
    Bohn, H., Identification and characterization of pregnancy protein in human placenta and their quantitative immunological determination in the serum of pregnant women, Archiv. Gynakologie 210: 440–457 (1971).CrossRefGoogle Scholar
  131. 124.
    Gall, S. A., and Halbert, S. P., Antigenic constituents in pregnancy plasma which are undetected in normal non-pregnant female or male plasma, Int. Arch. Allergy Appl. Immunol. 42: 503–515 (1972).CrossRefGoogle Scholar
  132. 125.
    Lin, T. M., Halbert, S. P., Kiefer, D., and Spellacy, W. N., Three pregnancy associated human plasma proteins: Purification, monospecific antisera and immunological identification, Int. Arch. Allergy Appl. Immunol. 47: 35–53 (1974).CrossRefGoogle Scholar
  133. 126.
    Bohn, H., Characterization of the pregnancy-associated glycoproteins as acute phase protein, Archiv. Gynekologie 213: 54–72 (1972).CrossRefGoogle Scholar
  134. 127.
    Horne, C. H. W., Bohn, H., and Towler, C. M., Pregnancy-associated a2glycoprotein, in Plasma Hormone Assays in Evaluation of Fetal Well Being, A. Klopper, Ed., Churchill-Livingstone, Edinburgh (1976), pp. 136–146.Google Scholar
  135. 128.
    Bohn, H., Detection, characterization, and diagnostic significance of human pregnancy-associated glycoproteins, Blut 26: 205–209 (1973).CrossRefGoogle Scholar
  136. 129.
    Stenison, W. H., and Blackstock, J. C., Synthesis of pregnancy-associated a2 macroglobulin by human leucocytes, Experientia 31: 371–373 (1975).CrossRefGoogle Scholar
  137. 130.
    Than, G. N., Csaba, I. F., Karg, N. J., Szabó, D. G., and Novak, P. F., Pregnancy associated a2-globulin antigen in pathological pregnancies, IRCS Med. Science 3: 94 (1975).Google Scholar
  138. 131.
    Bürgi, W., and Schmid, K., Preparation and Zn-a2-glycoprotein of normal human plasma, J. Biol. Chem. 236: 1066–1074 (1961).Google Scholar
  139. 132.
    Ekman, R., Johansson, B. G., and Ravnskov, U., Renal handling of Zn-a2- glycoprotein as compared with that of albumin and the retinol binding protein, J. Clin. Invest. 57: 945–954 (1976).CrossRefGoogle Scholar
  140. 133.
    Jirka, M., Blanicky, P., Srajer, J., Zwinger, A., and Jirasek, J. E., Human serum Zn-a2-glycoprotein in amniotic fluid, Clin. Chim. Acta 85: 107–110 (1978).CrossRefGoogle Scholar
  141. 134.
    Poortmans, J. R., and Schmid, K., The level of Zn-alpha 2-glycoprotein in normal human body fluids and kidney extract, J. Lab. Clin. Med. 71: 807–811 (1968).Google Scholar
  142. 135.
    Riordan, J. F., Biochemistry of zinc, Med. Clin. N. Amer. 60: 661–674 (1976).Google Scholar
  143. 136.
    Burch, R. E., and Sullivan, J. F., Clinical and nutritional aspects of zinc deficiency and excess, Med. Clin. N. Amer. 60: 675–685 (1976).Google Scholar
  144. 137.
    Hambidge, K. M., The role of zinc and other trace metals in pediatric nutrition and health, Ped. Clin. N. Amer. 24: 95–106 (1977).Google Scholar
  145. 138.
    Quarterman, J., Jackson, F. A., and Morrison, J. N., The effect of zinc deficiency on sheep intestinal mucin, Life Sciences 19: 979–986 (1976).CrossRefGoogle Scholar
  146. 139.
    Haupt, H., and Heide, K., Isolation and crystallization of ß2-glycoprotein I from human serum, Clin. Chim. Acta 14: 418–421 (1966).CrossRefGoogle Scholar
  147. 140.
    Finlayson, J. S., and Mushinski, J. F., Separation of subfractions of human ß2-glycoprotein I, Biochim. Biophys. Acta 147: 413–420 (1967).Google Scholar
  148. 141.
    Liu, V., and Putnam, I. W., Structural studies on ß2-glycoprotein I from human plasma, Fed. Proc. 34: 591 (1975).Google Scholar
  149. 142.
    Haupt, H., and Heimburger, N., Human serum proteins with high affinity for carboxymethyl cellulose I, Hoppe-Seyler’s Z. Physiol. Chem. 353: 1125–1132 (1972).CrossRefGoogle Scholar
  150. 143.
    Heimburger, N., Haupt, H., Krauz, T., and Baudner, S., Human serum protein with high affinity to carboxymethyl cellulose II, Hoppe-Seyler’s Z. Physiol. Chem. 353: 1133–1140 (1972).CrossRefGoogle Scholar
  151. 144.
    Haupt, H., Baudner, S., Kranz, T., and Heimburger, N., Isolation and partial characterization of an 8S a3-glycoprotein from human serum, Eur. J. Biochem. 23: 242–247 (1971).CrossRefGoogle Scholar
  152. 145.
    Haupt, H., and Baudner, S., Isolation and characterization of an until now unknown leucine rich 3.1 S-a2 glycoprotein of human serum, Hoppe-Seyler’s Z. Physiol. Chem. 358: 639–646 (1977).CrossRefGoogle Scholar
  153. 146.
    Schultze, H. E., Heide, K., and Haupt, H., The perchloric acid nonprecipitable proteins of human serum, Clin. Chim. Acta 7: 854–868 (1962).CrossRefGoogle Scholar
  154. 147.
    Haupt, H. and Heide, K., Isolation of a tryptophane poor al-glycoprotein which occurs in trace amounts in human serum, Clin. Chim. Acta 10: 555–558 (1964).CrossRefGoogle Scholar
  155. 148.
    Schultze, H. E., Heide, K., and Haupt, H., Isolation of an easily precipitable al glycoprotein of human serum, Nature 200: 1103 (1963).CrossRefGoogle Scholar
  156. 149.
    Nishi, S., Isolation and characterization of a human fetal a-globulin from the sera of fetuses and a hepatoma patient, Cancer Res. 30: 2507–2513 (1970).Google Scholar
  157. 150.
    Schwarz, M. K., Immunochemical techniques in detection of neoplasma, in Clinical Immunochemistry, S. Natelson, A. J. Pesce, and A. A. Dietz, Eds., Am. Assoc. Clin. Chem. Pub., Washington, D.C. (1978), pp. 251–260.Google Scholar
  158. 151.
    Burtin, P., The carcinogenic antigen of the digestive system (CEA) and the antigens cross reacting with it, Ann. Immunol. 129c: 185–198 (1978).Google Scholar
  159. 152.
    Brunngraber, E. C., Lysosomal enzyme deficiency diseases-glycoprotein catabolism in brain, in Glycoproteins and Glycolipids in Disease Processes, E. F. Walborg, Jr., Ed., Amer. Chem. Soc. Pub., Washington, D.C. (1978).Google Scholar
  160. 153.
    Hall, C. W., Liebaers, E., Dinatale, P., and Neufeld, E. F., Enzymic diagnosis of the genetic muco-polysaccharide storage disorders, Methods in Enzymology 50: 439–456 (1978).CrossRefGoogle Scholar
  161. 154.
    Autio, S., Norden, N. E., Ockerman, P. A., Riekkinen, P., Rapola, J., and Louhimo, T., Mannosidosis: Clinical, fine-structural and biochemical findings in three cases, Acta Paediat. Scand. 62: 555–565 (1973).CrossRefGoogle Scholar
  162. 155.
    Hocking, J. D., Jolly, R. D., and Batt, R. D., Deficiency of mannosidase in Angus cattle: An inherited lysosomal storage disease, Biochem. J. 128: 69–78 (1972).Google Scholar
  163. 156.
    Lundblad, A., Nilsson, B., Nordén, N. E., Svensson, S., Ockerman, P. A., and Jolly, R. D., A urinary pentasaccharide in bovine mannosidosis, Eur. J. Biochem. 59: 601–605 (1975).CrossRefGoogle Scholar
  164. 157.
    Chester, M. A., Lundblad, A., and Masson, P. K., The relationship between different forms of human alpha-mannosidase, Biochim. Biophys. Acta 391: 341–348 (1975).Google Scholar
  165. 158.
    Lundblad, A., Masson, P. K., Nordén, N. E., Svensson, S., and Ockerman, P. A., Mannosidosis: Storage material, alpha-mannosidase specificity and diagnostic methods, Adv. Exp. Med. Biol. 68: 301–311 (1976).CrossRefGoogle Scholar
  166. 159.
    Tandt, W. R. Den, Acid hydrolases in uncultured amniotic fluid cells, Clin. Chim. Acta 40: 199–204 (1972).CrossRefGoogle Scholar
  167. 160.
    VanHoof, F., and Hers, H. G., Mucopolysaccharidosis by absence of afucosidase, Lancet 1: 1198 (1968).CrossRefGoogle Scholar
  168. 161.
    Dawson, G., and Spranger, J. W., Fucosidosis a glycosphingolipidosis, N. Engl. J. Med. 285: 122 (1971).Google Scholar
  169. 162.
    Borrone, C., Gatti, R., Trias, X., and Durand, P., Fucosidosis clinical, biochemical, immunologic, and genetic studies in two new cases, J. Pediat. 84: 727–730 (1974).CrossRefGoogle Scholar
  170. 163.
    Turner, B. M., Turner, V. S., Beratis, N. G. and Hirschhorn, K., Polymorphism of human a-fucosidase, Am. J. Hum. Genet. 27: 651–661 (1975).Google Scholar
  171. 164.
    Patel, V., and Zeman, W., Variability of a-fucosidase deficiency, in Current Trends in Sphingolipidoses and Allide Disorders, B. W. Volk, and L. Schenk, Eds., Plenum Press, New York (1976).Google Scholar
  172. 165.
    Patel, V., Watanabe, I., and Zeman, W., Deficiency of L-fucosidase, Science 176: 426–427 (1972).CrossRefGoogle Scholar
  173. 166.
    Rodén, L., Biosynthesis of connective tissue polysaccharides, Pure Appl. Chem. 35: 181–193 (1973).CrossRefGoogle Scholar
  174. 167.
    Muir, H., The structure and metabolism of mucopolysaccharides (glycosaminoglycans) and the problem of the mucopolysaccharidoses, Am. J. Med. 47: 673–690 (1969).CrossRefGoogle Scholar
  175. 168.
    Whistler, R. L., and Olson, E. J., The biosynthesis of hyaluronic acid, Advances Carbohydr. Chem. 12: 299–319 (1957).CrossRefGoogle Scholar
  176. 169.
    Meyer, K., Chemical structure of hyaluronic acid, Fed. Proc. 17: 1075–1077 (1958).Google Scholar
  177. 170.
    Laurent, T. C., Ryan, M., Pietruszkiewicz, A., Fractionation of hyaluronic acid: The polydispersity of hyaluronic acid from the bovine vitreous body, Biochim. Biophys. Acta 42: 476–485 (1960).CrossRefGoogle Scholar
  178. 171.
    Wolfram, M. L., Tomomatsu, H., and Szarek, W. A., Configuration of the glycosidic linkage of 2-amino-2-deoxy-n-glucopyranose D-glucuronic acid in heparin, J. Org. Chem. 31: 1173–1178 (1966).CrossRefGoogle Scholar
  179. 172.
    Foster, A. B., and Huggard, A. J., The chemistry of heparin, Adv. Carbohydr. Chem. 10: 335–365 (1955).CrossRefGoogle Scholar
  180. 173.
    Cifonelli, J. A., and King, J., The distribution of sulfated uronic acid and hexosamine residue in heparin and heparan sulfate, Connect. Tissue Res. 3: 97–104 (1975).CrossRefGoogle Scholar
  181. 174.
    Choi, H. U., and Meyer, K., On the structure of keratan sulphates from various sources, Biochem. J. 151: 543–553 (1975).Google Scholar
  182. 175.
    Kaplan, D., McKusick, V. A., Trebad, S., and Lazarus, R., Keratosulfatechondroitin sulfate peptide from normal urine and from urine of patients with Morquio syndrome (mucopolysaccharidosis IV), J. Lab. Clin. Med. 71: 48–55 (1968).Google Scholar
  183. 176.
    Kennedy, J. F., Chemical and biochemical aspects of the glycosaminoglycans and protoglycans in health and disease, Adv. Clin. Chem. 18: 1–101 (1976).CrossRefGoogle Scholar
  184. 177.
    Knecht, J., Cifonelli, J. A., and Dorfman, A., Structural studies on heparitin sulfate of normal and Hurler tissues, J. Biol. Chem. 242: 4652–4661 (1967).Google Scholar
  185. 178.
    Ogren, S., and Lindahl, U., Cleavage of macromolecular heparin by an enzyme from mouse mastocytoma, J. Biol. Chem. 250: 2690–2697 (1975).Google Scholar
  186. 179.
    Dorfman, A., and Matelon, R., The mucopolysaccharidoses (a review), Proc. Natl. Acad. Sci. USA 73: 630–637 (1976).CrossRefGoogle Scholar
  187. 180.
    McKusick, V. A., Neufeld, E. F., and Kelly, T. E., The mucopolysaccharide storage diseases, in Metabolic Basis of Inherited Disease, J. A. Stanbury, J. B. Wyngarden, and D. S. Fredrickson, Eds., McGraw Hill, New York (1978), pp. 1282–1306.Google Scholar
  188. 181.
    Lamberg, S. I., and Stoolmiller, A. C., Glycosaminoglycans: A biochemical and clinical review, J. Invest. Dermatol. 63: 433–449 (1974).CrossRefGoogle Scholar
  189. 182.
    Brante, G., Gargoylism: A mucopolysaccharidosis, Scand. J. Clin. Lab. Invest. 4: 43–46 (1952).CrossRefGoogle Scholar
  190. 183.
    Kofoed, J. J., Tocci, A. A., and Barcelo, A. C., Further studies on hepatic glycosaminoglycans in Hurler’s syndrome, Experientia 34: 577–578 (1978).CrossRefGoogle Scholar
  191. 184.
    Dorfman, A., and Lorincz, A. E., Occurrence of urinary acid mucopolysaccharides in the Hurler syndrome, Proc. Natl. Acad. Sci. USA 43: 443–446 (1957).CrossRefGoogle Scholar
  192. 185.
    Pennock, C. A., A review and selection of simple laboratory methods used for the study of glycosaminoglycan excretion and the diagnosis of mucopolysaccharidosis, J. Clin. Pathol. 29: 111–123 (1976).CrossRefGoogle Scholar
  193. 186.
    Valdivieso, F., Marinez-Valcerdo. A., Maties, M., and Ugarte, M., Early diagnosis of hypermucopolysaccharidosis, Clin. Chim. Acta 44: 357–360 (1973).CrossRefGoogle Scholar
  194. 187.
    Cohen, D. M., Mourao, P. A. S., and Dietrich, C. P., Differentiation of mucopolysaccharidoses by analyses of the excreted sulfated mucopolysaccharides, Clin. Chim. Acta 80: 555–562 (1977).CrossRefGoogle Scholar
  195. 188.
    Cantz, M., Kresse, H., Barton, R. W., and Neufeld, F., Corrective factors for inborn errors of mucopolysaccharide metabolism, Methods Enzymol. 28: 884–897 (1972).CrossRefGoogle Scholar
  196. 189.
    DiNatale, P., Leder, I. G., and Neufeld, E. F., A radioactive substrate and assay for a-L-iduronidase, Clin. Chim. Acta 77: 211–218 (1977).CrossRefGoogle Scholar
  197. 190.
    Wappner, R. S., and Brandt, I. K., Hurler syndrome: a-L-iduronidase activity in leukocytes as a method for heterozygote detection, Pediat. Res. 10: 629–632 (1976).CrossRefGoogle Scholar
  198. 191.
    Liem, K. O., and Hooghwinkel, G. J., The use of a-L-iduronidase activity in leucocytes for the detection of Hurler and Scheie syndromes, Clin. Chim. Acta 60: 259–262 (1975).CrossRefGoogle Scholar
  199. 192.
    Dulaney, J. T., Milunsky, A., and Moser, H. W., Detection of the carrier state of Hurler’s syndrome by assay of a-L-iduronidase in leukocytes, Clin. Chim. Acta 69: 305–310 (1976).CrossRefGoogle Scholar
  200. 193.
    Fratantioni, J. C., Neufeld, E. F., Uhlendorf, B. W., and Jacobson, C. B., Intrauterine diagnosis of the Hurler and Hunter syndromes, N. Engl. J. Med. 280: 686–688 (1969).CrossRefGoogle Scholar
  201. 194.
    DeFerrante, N., Nichols, B. L., Donnelly, V., Neri, G., Hrgorcic, R., and Berglund, R. R., Induced degradation of glycosaminoglycans in Hurler’s and Hunter’s syndromes by plasma infusion, Proc. Natl. Acad. Sci. USA 68: 303–307 (1971).CrossRefGoogle Scholar
  202. 195.
    Scheie, H. G., Hambrick, G. W., Jr., and Barness, L. A., A newly recognized forme frustre of Hurler’s disease (gargoylism), Am. J. Ophthalmol. 53: 753–769 (1962).Google Scholar
  203. 196.
    Bach, G., Friedman, R., Weissmann, B., and Neufeld, E. F., The defect in the Hurler and Scheie syndromes: Deficiency of a-L-iduronidase, Proc. Natl. Acad. Sci. USA 69: 2048–2051 (1972).CrossRefGoogle Scholar
  204. 197.
    Neufeld, E. F., Lim, T. W. and Shapiro, L. J., Inherited disorders of lysosomal metabolism, Ann. Rev. Biochem. 44: 357–376 (1975).CrossRefGoogle Scholar
  205. 198.
    Lowry, R. B., and Renwick, D. H. G., The relative frequency of the Hurler and Hunter syndromes, N. Engl. J. Med. 284: 221–222 (1971).Google Scholar
  206. 199.
    Kajii, T., Matsuda, K., Osawa, T., Katsunuma, H., Ichida, T., and Arashima, S., Hunter/Scheie genetic compound in Japanese brothers, Clin. Genet. 6: 394–400 (1974).CrossRefGoogle Scholar
  207. 200.
    Stevenson, R. E., Howell, R. R., McKusick, V. A., Sufikind, R., Hanson, J. W., Elliot, D. E., and Neufeld, E. F., The iduronase deficiency mucopolysaccharidosis clinical and roentgenographic studies, Pediatrics 57: 111–122 (1976).Google Scholar
  208. 201.
    Spranger, J., The systemic mucopolysaccharidoses, Ergeb. Inn. Med. Kinderheilkd. 32: 165–265 (1972).Google Scholar
  209. 202.
    Karpati, G., Carpenter, S., Eisan, A. A., Wolfe, L. S., and Feindel, W., Multiple peripheral nerve intrapments: An unusual phenotypic variant of the Hunter syndrome (mucopolysaccharidosis II) in a family, Arch. Neurol. 31: 418–422 (1974).CrossRefGoogle Scholar
  210. 203.
    Liebaers, I., and Neufeld, E. F., Iduronate sulfatase activity in serum, lymphocytes and fibroblasts-simplified diagnosis of the Hunter syndrome, Pediat. Res. 10: 733–736 (1976).Google Scholar
  211. 204.
    Hall, C. W., Liebaers, I., DiNatale, P., and Neufeld, E. F., Enzymic diagnosis of the genetic mucopolysaccharide storage disorders, Methods in Enzymology 50: 439–456 (1978).CrossRefGoogle Scholar
  212. 205.
    Migeon, B. R., Sprenkle, J. A., Liebaers, I., Scott, J. F., and Neufeld, E. F., X-linked Hunter syndrome: The heterozygous phenotype in cell culture, Am. J. Hum. Genet. 29: 448–454 (1977).Google Scholar
  213. 206.
    Yatzin, S., Stratter, M., Abeliuk, P., Meshulam, M., and Russel, A., A therapeutic trial of fresh plasma infusions over a period of 22 months in two siblings with Hunter’s syndrome, Israeli J. Med. Sci. 11: 802–803 (1975).Google Scholar
  214. 207.
    DeKaban, A. S., Holden, K. P., and Constantopoulos, G., Effects of fresh plasma or whole blood transfusion on patients with various types of mucopolysaccharidosis, Pediatrics 50: 688–692 (1972).Google Scholar
  215. 208.
    Dean, M. F., Muir, H., Benson, P. F., Button, L. E., Butchelor, J. R., and Bewick, M., Increased breakdown of glycosaminoglycans and appearance of corrective enzyme after skin transplants in Hunter syndrome, Nature 257: 609–612 (1975).CrossRefGoogle Scholar
  216. 209.
    Harris, R. C., Mucopolysaccharide disorder: A possible new genotype of Hurler’s syndrome, Am. J. Dis. Child 102: 741–742 (1961).Google Scholar
  217. 210.
    Sanfillipo, S. J., Podosin, R., Langer, L., and Good, R. A., Mental retardation associated with acid mucopolysacchariduria (heparitin sulfate type), J. Pediatr. 63: 837–838 (1963).CrossRefGoogle Scholar
  218. 211.
    Herd, J. K., Subramanian, S., and Robinson, H., Type III mucopolysaccharidosis: Report of a case with severe mitral valve involvement, J. Pediatr. 82: 101–104 (1973).CrossRefGoogle Scholar
  219. 212.
    Kresse, H., Wiesmann, U., Cantz, M., Hall, C. W., and Neufeld, E. F., Biochemical heterogeneity of the Sanfillipo syndrome: Preliminary characterization of two deficient factors, Biochem. Biophys. Res. Commun. 42: 892–898 (1971).CrossRefGoogle Scholar
  220. 213.
    Matalon, R., and Dorfman, A., Sanfillipo A syndrome: Sulfamidase deficiency in cultured skin fibroblasts and liver, J. Clin. Invest. 54: 907–912 (1974).CrossRefGoogle Scholar
  221. 214.
    Von Figura, K., and Kresse, H., The Sanfillipo corrective factor: An N-acetyla-o-glucosaminidase, Biochem. Biophys. Res. Commun. 48: 262–269 (1972).CrossRefGoogle Scholar
  222. 215.
    VonFigura, K., and. Kresse, H., Sanfillipo disease type B, presence of material cross reacting with antibodies against a-N-acetylglucosaminidase, Eur. J. Biochem. 61: 581–588 (1976).CrossRefGoogle Scholar
  223. 216.
    VonFigura, K., Logering, M., Mersmann, G., and Kresse, H., Sanfillipo B disease: Serum assay for detection of homozygous and heterozygous individuals in three families, J. Pediatr. 83: 607–611 (1973).CrossRefGoogle Scholar
  224. 217.
    Gordon, B. A., Felchi, V., Burdreau, C. H., and Tyler, I., Defective heparan sulfate metabolism in the Sanfillipo syndrome and assay for this defect in the assessment of mucopolysaccharidosis patient, Clin. Biochem. 8: 184–193 (1975).CrossRefGoogle Scholar
  225. 218.
    Singh, J., Donnelly, P. V., DiFerrante, N., Nichols, B. L., and Niebes, P., Sanfillipo disease: Differentiation of Types A and B by an analytical method, J. Lab. Clin. Med. 84: 438–450 (1974).Google Scholar
  226. 219.
    Harper, P. S., Lawrence, K. M., Parkes, A., Wusteman, F. S., et al., Sanfillipo: A disease in the fetus, J. Med. Genet. 11: 123–132 (1974).CrossRefGoogle Scholar
  227. 220.
    Gadbols, P., Moreau, J., and LaBerge, C., The Morquio disease in the province of Quebec, Union Med. Can. 102: 606–607 (1973).Google Scholar
  228. 221.
    Hollister, D. W., Cohen, A. H., Rimoin, D. L., and Silberberg, R., The Morquio syndrome (mucopolysaccharidosis IV): Morphologic and biochemical studies, Johns Hopkins Med. J. 137: 176–183 (1975).Google Scholar
  229. 222.
    Dale, F., Unusual forms of familial osteochondrodystrophy, Acta Radiol. 12: 337–358 (1931).CrossRefGoogle Scholar
  230. 223.
    Levin, L., Jorgenson, R. J., and Salinas, C. F., Oral findings in the Morquio syndrome (mucopolysaccharidosis IV), Oral Surg. 39: 390–395 (1975).CrossRefGoogle Scholar
  231. 224.
    Gilles, F. H., and Denel, R. K., Neuronal cytoplasmic globules in the brain in Morquio’s syndrome, Arch. Neurol. 25: 393–403 (1971).CrossRefGoogle Scholar
  232. 225.
    Matalon, R., Arbogast, B., Justice, P., Brandt, I. K., and Dorfman, A., Morquio’s syndrome: Deficiency of a chondroitin sulfate N-acetylhexosamine sulfate sulfatase, Biochem. Biophys. Res. Commun. 69: 759–765 (1974).CrossRefGoogle Scholar
  233. 226.
    Songh, J., DiFerrante, N., Niebes, P., and Tavella, D., N-acetyl galactosamine-6-sulfate sulfatase in man: Absence of the enzyme in Morquio disease, J. Clin. Invest. 57: 1036–1040 (1976).CrossRefGoogle Scholar
  234. 227.
    Maroteaux, P., Leveque, B., Marie, J., and Lamy, M., A novel dysostosis with urinary excretion of chondroitin sulfate B, Presse. Med. 71: 1849–1852 (1963).Google Scholar
  235. 227a.
    Ginsberg, L. C., Donnelly, P. V., DiFerrante, D. T., DiFerrante, N., Caskey, C. T., N-acetylglycosamine-6-sulfate sulfatase in man. Deficiency of the enzyme in a new mucopolysaccharidosis, Pediatr. Res. 12: 805–809 (1978).CrossRefGoogle Scholar
  236. 228.
    Melhem, R., Dorst, J. P., Scott, C. I., Jr., and McKusick, V. A., Roentgen findings in mucolipids, Radiology 106: 153–160 (1973).Google Scholar
  237. 229.
    Peterson, D. I., Bacchus, A., Seaich, L., and Kelly, T. E., Myelopathy associated with Maroteaux-Lamy syndrome, Arch. Neurol. 32: 127–129 (1975).CrossRefGoogle Scholar
  238. 230.
    DiFerrante, N., Hyman, B. H., Klish, W., Donnelly, P. V., Nichols, B. L., and Dutton, R. G., Mucopolysaccharidosis VI (Maroteaux-Lamy disease): Clinical and biochemical study of a mild variant case, Johns Hopkins Med. J. 135: 42–54 (1974).Google Scholar
  239. 231.
    Glober, G. A., Tanaka, K. R., Turner, J. A., and Liu, C. K., Mucopolysaccharidosis, an unusual case of cardiac valvular disease, Am. J. Cardiol. 22: 133–136 (1968).CrossRefGoogle Scholar
  240. 232.
    Matalon, R., Arbogast, B., and Dorfman, A., Deficiency of chondroitin sulfate N-acetyl-galactosamine-4-sulfate sulfatase in Matoteaux-Lamy syndrome, Biochem. Biophys. Res. Commun. 61: 1450–1457 (1974).CrossRefGoogle Scholar
  241. 233.
    Humbel, R., Rapid method for measuring arysulfatase A and B in leucocytes as a diagnosis for sulfatidosis, muco-sulfatidosis and mucopolysaccharidosis VI, Clin. Chim. Acta 60: 339–341 (1976).CrossRefGoogle Scholar
  242. 234.
    Kleijers, W. J., Wolffers, G. M., Hoogeneen, A., and Niermeijer, M. F., Prenatal diagnosis of Maroteaux-Lamy syndrome, Lancet 11: 50 (1976).CrossRefGoogle Scholar
  243. 235.
    Beratis, M. G., Turner, B. M., Weiss, R., and Hirschhorn, K., Aryl sulfatase B deficiency in Maroteaux-Lamy syndrome: Cellular studies and carrier identification, Ped. Res. 9: 475–480 (1975).CrossRefGoogle Scholar
  244. 236.
    Shapura, E., DeGregorio, R. P., Matalon, R., and Nadler, H. L., Reduced arylsulfatase B activity of the mutant enzyme protein in Maroteaux-Lamy syndrome, Biochem. Biophys. Res. Commun. 62: 448–455 (1975).CrossRefGoogle Scholar
  245. 237.
    Sly, W. S., Quintan, B. A., McAlister, W. H., and Rimoin, D. L., Betaglucuronidase deficiency: Report of clinical, radiologie and biochemical features of a new mucopolysaccharidosis, J. Pediatr. 82: 249–257 (1973).CrossRefGoogle Scholar
  246. 238.
    Beaudet, A. L., DiFerrante, N. M., Ferry, G. D., Nichols, B. L., and Mullins, C. E., Variation in the phenotypic expression of ß glucuronidase deficiency, J. Pediatr. 86: 388–394 (1975).CrossRefGoogle Scholar
  247. 239.
    Gehler, J., Cantz, M., Tolksdorf, M., Spranger, J., Gilbert, E., and Drube, H., Mucopolysaccharidosis VII (beta glucuronidase deficiency) Humangenetik 23: 149–158 (1974).Google Scholar
  248. 240.
    Lalley, P. A., Brown, J. A., Eddy, R. I., Haley, L. L., and Shows, T. B., Assignment of the gene for ß-glucuronidase (ß GUS) to chromosome 7 in man, Birth Defects 42: 184–187 (1976).Google Scholar
  249. 241.
    Bell, C. E., Jr., Sly, W. S., and Brot, F. E., Human ß-glucuronidase deficiency mucopolysaccharidosis identification of cross-reactive antigen in cultured fibroblasts of deficient patients by enzyme immunoassay, J. Clin. Invest. 59: 97–105 (1977).CrossRefGoogle Scholar
  250. 242.
    Glaser, J. H., and Sly, W. S., Beta glucuronidase deficiency mucopolysaccharidosis: Methods for enzymatic diagnosis, J. Lab. Clin. Med. 82: 969977 (1973).Google Scholar
  251. 243.
    Wolfe, L. S., Senior, R. G., and NG-Ying-Kin, N. M., The structure of oligosaccharides accumulating in the liver of G-Ml-gangliosidosis, Type I, J. Biol. Chem. 249: 1828–1838 (1974).Google Scholar
  252. 244.
    Ng Ying Kin, N. M., and Wolfe, L. S., Oligosaccharides accumulating in the liver of a patient with GM2-gangliosidosis variant O (Sandhoff-Jatzkewitz disease), Biochem. Biophys. Res. Commun. 59: 837–844 (1974).CrossRefGoogle Scholar
  253. 245.
    Pollitt, R. J., Jenner, F. A., and Merskey, H., Aspartylglycosaminuria, an inborn error of metabolism associated with mental defect, Lancet 2: 253–255 (1968).CrossRefGoogle Scholar
  254. 246.
    Palo, J., and Mattsson, K., Eleven new cases of aspartylglycosaminuria, J. Ment. Defic. Res. 14: 168–173 (1970).Google Scholar
  255. 247.
    Autio, S., Aspartylglycosaminuria: Analysis of 34 patients, J. Ment. Defic. Res. Monograph Series 1, Surrey, England (1972).Google Scholar
  256. 248.
    Isenberg, J. N., and Sharp, H. L., Aspartylglucosaminuria: Psychomotor retardation masquerading as a mucopolysaccharidosis, J. Pediatr. 86: 713–717 (1975).CrossRefGoogle Scholar
  257. 249.
    Palo, J., Riekkinen, P., Arstila, A. U., Autio, S., and Kivimaki, T., Aspartylglucosaminuria II: Biochemical studies on brain, liver, kidney and spleen, Acta Neuropathol. 20: 217–224 (1972).CrossRefGoogle Scholar
  258. 250.
    Dugal, B., and Stremme, J., Purification and some properties of 1-aspartamido-ß-N-acetylglucosamine amidohydrolase from human liver, Biochem. J. 165: 497–502 (1977).Google Scholar
  259. 251.
    Pollitt, R. J., and Pretty, K. M., The glycoasparagines in urine of a patient with aspartylglycosaminuria, Biochem. J. 141: 141–146 (1974).Google Scholar
  260. 252.
    Aula, P., Näntö, V., Loipio, M. L., and Autio, S., Aspartylglucosaminuria: Deficiency of aspartylglucosaminidase in cultured fibroblasts of patients and their heterozygous parents, Clin. Genet. 4: 297–300 (1973).CrossRefGoogle Scholar
  261. 253.
    Sugahara, K., Funakoshi, S., Funakoshi, I., Aula, P., and Yamashina, I., Characterization of one neutral and two acidic glycoasparagines isolated from the urine of patients with aspartylglycosaminuria, J. Biochem. (Japan) 80: 195–201 (1976).Google Scholar
  262. 254.
    Legum, C. P., Schorr, S., and Berman, F. R., The genetic mucopolysaccharidoses and mucolipidoses: Review and comment, Ada. Pediatr. 22: 305–347 (1976).Google Scholar
  263. 254a.
    Cantz, M., Geher, J., and Spranger, J., Mucolipidoses I: Increased sialic acid content and deficiency of an a-N-acetylneuraminidase in cultured fibroblasts, Biochem. Biophys. Res. Commun. 74: 732–738 (1977).CrossRefGoogle Scholar
  264. 254b.
    Livni, N., and Merin, S. Mucolipidosis IV: Ultrastructural analysis of recently defined genetic disorder. Arch. Pathol. Lab. Med. 102: 600–604 (1978).Google Scholar
  265. 255.
    Hanai, J., Leroy, J., and O’Brien, J. S., Ultrastructure of cultured fibroblasts in I-cell disease, Am. J. Dis. Child. 122: 34–38 (1971).Google Scholar
  266. 256.
    Gilbert, E. F., Dawson, G., Zurhein, G. M., and Spranger, J., I-cell disease (mucolipidosis I): Pathological histochemical, ultrastructural and biochemical observations in four cases, Z. Kinderheilk. 114: 259–292 (1973).CrossRefGoogle Scholar
  267. 257.
    Martin, J. J., Leroy, J. G., Farriaux, J. P., Fontaine, G., Desnick, R. J., and Cabello, A., I-cell disease (mucolipidosis II): A report on its pathology, Acta Neuropathol. 33: 285–305 (1975).CrossRefGoogle Scholar
  268. 258.
    Taylor, H. A., Thomas, G. H., Miller, C. S., Kelly, T. E., and Siggers, D., Mucolipidosis III (pseudo-Hurler polydystrophy): Cytological and ultra-structural observations of cultured fibroblast cells, Clin. Genet. 4: 388–397 (1973).CrossRefGoogle Scholar
  269. 259.
    Wiesmann, U. N., Vasella, F., and Herschkowitz, N. N., Mucolipidosis II (I-cell disease), Acta Paediatr. Scand. 63: 9–16 (1974).CrossRefGoogle Scholar
  270. 260.
    Berman, E. R., Kohn, G., Yatsiv, S., and Stein, H., Acid hydrolase deficiencies and abnormal glycoproteins in mucolipidosis III (pseudo-Hurler poly-dystrophy), Clin. Chim. Acta 52: 115–124 (1974).CrossRefGoogle Scholar
  271. 261.
    Schmiekel, R. D., Distler, J., and Jourdian, G. W., Accumulation of sulfate containing acid mucopolysaccharides in I-cell fibroblasts, J. Clin. Lab. Invest. 86: 672–682 (1975).Google Scholar
  272. 262.
    Eisen, A. F., LeRoy, J. G., Vauneuville, I. J., and Veroruyssen, A. L., Isoenzymes of serum N-acetyl-beta-di-glucosaminidase in the I-cell disease heterozygote, Hum. Genet. 31: 75–81 (1976).CrossRefGoogle Scholar
  273. 263.
    Koseki, M., Wu, J-Y, Tsurumi, K., and Nagai, Y., Sialogluciduria in lysosomal diseases: Quantitative analysis of urinary low molecular sialoglucides from patients with mucopolysaccharidosis and with mucolipidosis, Tohoku, J. Exp. Med. 124: 351–360 (1978).Google Scholar
  274. 264.
    Strecker, G., Michalski, J. C., Montreuil, J., and Tarbeaux, J. P., Deficit in neuraminidase associated with mucolipidosis II (I-cell disease), Biomedicine 25: 238–239 (1976).Google Scholar
  275. 265.
    Aula, P., Rapola, J., Autio, S., Raivio, K., and Kayalainen, O., Prenatal diagnosis and fetal pathology of I-cell disease (mucolipidosis Type II), J. Pediatr. 87: 221–226 (1975).CrossRefGoogle Scholar
  276. 266.
    Rosenberg, L., and Schubert, M., The protein polysaccharides of cartilage, Rheumatology 3: 1–60 (1970).Google Scholar
  277. 267.
    Rosenberg, L., Cartilage proteoglycans, Fed. Proc. 32: 1467–1473 (1973).Google Scholar
  278. 268.
    Lindahl, U., and Höök, M., Glycosaminoglycans and their binding to biological macromolecules, Annu. Rev. Biochem. 47: 385–417 (1978).CrossRefGoogle Scholar
  279. 269.
    Meyer, K., and Smyth, E., On glycoproteins VI: The preparation of chondroitin sulfuric acid, J. Biol. Chem. 119: 507–510 (1937).Google Scholar
  280. 270.
    Muir, H., The nature of the link between proteins and carbohydrate of a chondroitin sulfate complex from hyaline cartilage, Biochem. J. 69: 195–204 (1958).Google Scholar
  281. 271.
    Partridge, S. M., The chemistry of connective tissues. I. The state of combination of chondroitin sulfate in cartilage, Biochem. J. 43: 387–397 (1948).Google Scholar
  282. 272.
    Sajdera, S. W., and Hascall, V. C., Protein polysaccharide complex from bovine nasal cartilage: A comparison of low and high shear extraction procedures, J. Biol. Chem. 244: 77–87 (1969).Google Scholar
  283. 273.
    Lindahl, U., Further characterization of the heparin-protein linkage region, Biochim. Biophys. Acta 130: 368–382 (1966).CrossRefGoogle Scholar
  284. 274.
    Robinson, H. C., Telser, A., and Dorfman, A., Studies on biosynthesis of the linkage region of chondroitin sulfate protein complex, Proc. Natl. Acad. Sci. USA 56: 1859–1866 (1966).CrossRefGoogle Scholar
  285. 275.
    Roughley, P. J., and Barrett, A. J., The degradation of cartilage proteoglycans by tissue proteinases, Biochem. J. 167: 629–637 (1977).Google Scholar
  286. 276.
    Strider, W., Pal, S., and Rosenberg, L., Comparison of proteoglycans from bovine articular cartilage, Biochim. Biophys. Acta 379: 271–281 (1975).Google Scholar
  287. 277.
    Heinegard, D., and Axelsson, I., Distribution of keratan sulfate in cartilage proteoglycans, J. Biol. Chem. 252: 1971–1979 (1977).Google Scholar
  288. 278.
    Rodén, L., and Smith, R., Structure of the neutral trisaccharide of the chondroitin 4-sulphate-protein linkage region, J. Biol. Chem. 241: 5949–5954 (1966).Google Scholar
  289. 279.
    Rodén, L., and Schwartz, N. B., The biosynthesis of chondroitin sulfate, Biochem. Soc. Trans. 1: 227–230 (1973).Google Scholar
  290. 280.
    Rosenberg, L., Hellmann, W., and Kleinschmidt, A. K., Electron microscopic studies of proteoglycan aggregates from bovine articular cartilage, J. Biol. Chem. 250: 1877–1883 (1975).Google Scholar
  291. 281.
    Rosenberg, L., Hellmann, W., and Kleinschmidt, A. K., Macromolecular models of protein polysaccharides from bovine vasal cartilage based on electron microscopic studies, J. Biol. Chem. 245: 4123–4130 (1970).Google Scholar
  292. 282.
    Meyer, K., Linker, A., Davidson, E. A., and Weissman, B., The mucopolysaccharides of bovine cornea, J. Biol. Chem. 205: 611–616 (1953).Google Scholar
  293. 283.
    Axelsson, I., and Heinegard, D., Characterization of the keratan sulfate of proteoglycans from bovine corneal stroma, Biochem. J. 169: 517–530 (1978).Google Scholar
  294. 284.
    Greiling, H., Stuhlsaz, H. W., Hirtzel, F., Loftier, R., et al., Structure and metabolism of proteokeratansulfate, J. Clin. Chem. Clin. Biochem. 15: 441–442 (1977).Google Scholar
  295. 285.
    Branford White, C. J., The isolation of proteoheparan sulfate from sheep brain, Biochem. Soc. Trans. 5: 1083–1085 (1977).Google Scholar
  296. 286.
    Christner, J. E., Brown, M. L., and Dziewiatkowski, D. D., Interaction of cartilage proteoglycans with hyaluronic acid, Biochem. J. 167: 711–716 (1977).Google Scholar
  297. 287.
    Wiebkin, O. W., and Muir, H., Synthesis of proteoglycans by suspension and monolayer: Cultures of adult chondrocytes and de novo cartilage modules the effect of hyaluronic acid, J. Cell. Sci. 27: 199–211 (1977).Google Scholar
  298. 288.
    Dorfman, A., Pei-Lee, H., Strom, C. M., Vertel, B. M., and Upholt, W. B., The differentiation of cartilage, Ada. Pathobiol. 6: 104–123 (1977).Google Scholar
  299. 289.
    Sledge, C. B., Growth hormone and articular cartilage, Fed. Proc. 32: 1503–1505 (1973).Google Scholar
  300. 290.
    Linsenmayer, T. F., and Toole, B. P., Biosynthesis of different collagens and glycosaminoglycans during limb development, Birth Defects 13: 19–35 (1977).Google Scholar
  301. 291.
    Von Kresse, H., and Truppe, W., Research on pinocytosis of proteoglycans and glycosaminoglycans, Wiener, Klin. Wochschr. 6: 188–191 (1978).Google Scholar
  302. 292.
    Pearson, J. P., and Mason, R. M., Heterogeneity of proteoglycans from adult costal cartilage, Biochem. Soc. Trans. 6: 244–246 (1978).Google Scholar
  303. 293.
    Rosenberg, L., Wolfenstein Todel, C., Margolis, R., Pal, S., and Strider, W., Proteoglycans from bovine proximal humeral articular cartilage, J. Biol. Chem. 251: 6439–6444 (1976).Google Scholar
  304. 294.
    Pearson, J. P., and Mason, R. M., Heterogeneity of proteoglycans from adult costal cartilage, Biochem. Soc. Trans. 6: 244–246 (1978).Google Scholar
  305. 295.
    Sapolsky, A. I., Altman, R. D., and Howell, D. S., Cathepsin D activity in normal and osteoarthritic human cartilage, Fed. Proc. 32: 1489–1493 (1973).Google Scholar
  306. 296.
    Bushell, G. R., Ghosh, P., Taylor, T. F. K., and Akeson, W. H., Proteoglycan chemistry of the intervertebral disks, Clin. Orthopaedics Related Res. 129: 115–123 (1977).Google Scholar
  307. 297.
    Weiss, C., Ultrastructural characteristics of osteoarthritis, Fed. Proc. 32: 1459–1466 (1973).Google Scholar
  308. 298.
    Mankin, H. J., Biochemical and metabolic abnormalities in osteoarthritic human cartilage, Fed. Proc. 32: 1478–1480 (1973).Google Scholar
  309. 299.
    Calatroni, A., The biochemical diagnosis of mucopolysaccharidoses: Post and present concepts, Biochem. Exp. Biol. 13: 41–114 (1977).Google Scholar
  310. 300.
    Nevo, Z., Michaell, D., and Daentl, D. L., Examination of core protein of proteoglycans: Abnormal PG in auriculoepiphyseal dysplasia, Exp. Biol. Pathol. 28: 247–255 (1978).CrossRefGoogle Scholar
  311. 301.
    Glimelius, B., Norling, B., Westermark, B., and Wasteson, A., Composition and distribution of glycosaminoglycans in cultures of human normal and malignant glial cells, Biochem. J. 172: 443–456 (1978).Google Scholar
  312. 302.
    Greiling, H., and Stuhlsatz, H. W., Increased urinary excretion of keratan sulfate in fucosidosis, J. Clin. Chem. Clin. Biochem. 16: 329–334 (1978).Google Scholar
  313. 303.
    Alhadeff, J. A., Glycoproteins and cystic fibrosis: A review, Clin. Genetics 14: 189–201 (1978).CrossRefGoogle Scholar
  314. 304.
    Greenwald, R. A., Moy, W. W., and Seibold, J., Functional properties of cartilage proteoglycans, Sem. Arthr. and Rheum. 8: 53–67 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Samuel Natelson
    • 1
  • Ethan A. Natelson
    • 2
  1. 1.Department of Environmental Practice, College of Veterinary MedicineUniversity of TennesseeKnoxvilleUSA
  2. 2.University of Texas Medical School and St. Joseph HospitalHoustonUSA

Personalised recommendations