Advertisement

Albumin in Nutrition and Transport

  • Samuel Natelson
  • Ethan A. Natelson

Abstract

As pointed out in Section 1.1, albumin literally means egg white. A distinctive characteristic of albumin, noted early, is the fact that it is coagulated by heat. This was observed when eggs were boiled. When milk was boiled, the film of coagulate, formed at the surface, was recognized as albumin, as distinct from casein which does not coagulate with heat. It was also recognized that urine from some patients formed a coagulate with heat. To distinguish this coagulate from other precipitates which form, the urine is heated after adding a few drops of acetic acid. The presence of albumin in the urine as an indication of kidney disease has been noted from the middle of the 19th century.

Keywords

Human Serum Albumin Albumin Level Fatty Acid Binding Human Albumin Plasma Albumin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Reading

  1. Schreiber, G., and Urban, J., The synthesis and secretion of albumin, Rev. Physiol. Biochem. Pharmacol. 82: 27–95 (1978).CrossRefGoogle Scholar
  2. Sgouris, J. T., and Rene, A., Eds., Proceedings of the Workshop on Albumin, National Institutes of Health, Bethesda, WH-400 W327-F (1975).Google Scholar
  3. Koch-Weser, J., Binding of drugs to serum albumin, N. Engl. J. Med. 234: 311–316, 326–331 (1976).Google Scholar
  4. Rothschild, M. A., Dratz, M., and Schreiber, S. S., Regulation of Albumin Metabolism, Ann. Rev. Med. 26: 91–104 (1975).CrossRefGoogle Scholar
  5. Spector, A. A., Fatty acid binding to plasma albumin, J. Lipid Res. 16: 165–173 (1975).Google Scholar
  6. Janatova, J., On the heterogeneity of serum albumin, J. Med. 3: 143–216 (1974).CrossRefGoogle Scholar
  7. Vallner, J. J., Binding of drugs by albumin and plasma protein, J. Pharm. Sci. 66: 447–463 (1977).CrossRefGoogle Scholar
  8. Arnstein, H. R. V., Ed., Synthesis of Amino Acids and Proteins, Vol. 7, University Park Press, Baltimore (1975).Google Scholar
  9. Anton, A. H., and Solomon, H. M., Drug-protein binding, Ann. N.Y. Acad. Sci. 226: 1–362 (1973).CrossRefGoogle Scholar
  10. Peters, T. Jr., Serum albumin, in The Plasma Proteins, Vol. I, F. W. Putnam, Ed., Academic Press, New York (1975), pp. 133–181.Google Scholar
  11. Morgan, W. T., Porphyrin-binding proteins in serum, Ann. N.Y. Acad. Sci. 244: 625–650 (1975).Google Scholar
  12. Hoffenberg, R., Measurement of the synthesis of liver-produced plasma proteins with special reference to their regulation by dietary protein and amino acid supply, Proc. Nutr. Sci. 31: 265–272 (1972).CrossRefGoogle Scholar
  13. Rosenoer, V., Ed., Albumin: Structure, Function and Uses, Pergamon, Elmsford, New York (1977).Google Scholar

References

  1. 1.
    James, W. P., and Hay, A. M., Albumin metabolism: effect of the nutritional state and the dietary protein intake, J. Clin. Invest. 47: 1958–1972 (1968).CrossRefGoogle Scholar
  2. 2.
    Castell, D. O., Ascites in cirrhosis: relative importance of portal hypertension and hypoalbuminemia, Am. J. Dig. Dis. 12: 916–922 (1967).CrossRefGoogle Scholar
  3. 3.
    Carone, F. A., Everett, B. A., Blondeel, N. J., and Stolarczyk, J., Renal localization of albumin and its function in the concentrating mechanism, Am. J. Physiol. 212: 387–393 (1967).Google Scholar
  4. 4.
    Hofmeister, F., On the preparation of crystalline egg albumin and the crystallizability of colloidal materials, Ztschr. Physiol. Chem. Strassb. 14:165–172 (1889/1890).Google Scholar
  5. 5.
    Michel, A., and Gürber, A., Addendum to the knowledge concerning the Gürber serum albumin crystals, Verhandl. Physiol. Med. Gesells. Wurzb., N. F. 29: 117–144 (1895).Google Scholar
  6. 6.
    Ashbrook, J. D., Spector, A. A., Santos, E. C., and Fletcher, J. G., Long-chain fatty acid binding to human plasma albumin, J Biol. Chem. 250: 2333–2338 (1975).Google Scholar
  7. 7.
    Saifer, A., and Goldman, L., The free fatty acids bound to human serum albumin, J. Lipid. Res. 2: 268–270 (1961).Google Scholar
  8. 8.
    Oncley, J. L., The size, shape and charge distribution of protein molecules, Science 106: 509–510 (1947).Google Scholar
  9. 9.
    Brown, J. R., Structural origins of mammalian albumin, Fed. Proc. 35: 2141–2144 (1976).Google Scholar
  10. 10.
    Brown, J. R., Behrens, P. O., and Spiekerman, A. M., Structure of human serum albumin, Fed. Proc. 34: 591 (1975).Google Scholar
  11. 11.
    Squire, P. G., Moser, P., and O’Konski, C. T., The hydrodynamic properties of bovine serum albumin monomer and dimer, Biochemistry 7: 4261–4272 (1968).CrossRefGoogle Scholar
  12. 12.
    Wagner, M. L., and Scheraga, H. A., Gouy diffusion studies of bovine serum albumin, J. Phys. Chem. 60: 1066–1076 (1956).CrossRefGoogle Scholar
  13. 13.
    McClure, R. J., and Craven, B. M., X-ray data for four crystalline forms of serum albumin, J. Mol. Biol. 83: 551–555 (1974).CrossRefGoogle Scholar
  14. 14.
    Foster, J. F., Sogami, M., Petersen, H. A., and Leonard, W. J., Jr., The microheterogeneity of plasma albumins. I. Critical evidence for and description of the microheterogeneity model, J. Biol. Chem. 240: 2495–2502 (1965).Google Scholar
  15. 15.
    Foster, J. F., and Clark, P., A re-examination of the acid titration behavior of human mercaptalbumin. Changes in amphoteric properties associated with the N-F transformation, J. Biol. Chem. 237: 3163–3170 (1963).Google Scholar
  16. 16.
    Janatovia, J., On the heterogeneity of serum albumin, J. Med. (Basel) 5: 143–216 (1974).Google Scholar
  17. 17.
    Wong, K. P., and Foster, J. F., The microheterogeneity of plasma albumin. VI. Membrane equilibrium salting-out as a method of demonstrating micro-heterogeneity of proteins, Biochemistry 8: 4096–5103 (1969).CrossRefGoogle Scholar
  18. 18.
    McMenamy, R. H., and Lee, Y., Microheterogeneity in albumin: A contaminant, Arch. Biochem. Biophys. 122: 635–643 (1967).CrossRefGoogle Scholar
  19. 19.
    Brewer, J. M., and DeSa, R. J., Stopped-flow studies of the N-F transition in bovine-serum albumin, Fed. Proc. 32:458 Abs. (1973).Google Scholar
  20. 20.
    Stroupe, S. D., and Foster, J. F., Further studies of the sulfhydryl-catalyzed isomerization of bovine mercaptalhumin, Biochemistry 12: 3824–3830 (1973).CrossRefGoogle Scholar
  21. 21.
    Wallevik, K., Reversible denaturation of human serum albumin by pH, temperature, and guanidine hydrochloride followed by optical rotation, J. Biol. Chem. 248: 2650–2655 (1973).Google Scholar
  22. 22.
    Aoki, K., Sato, K., Nagoka, S., Kamada, M., and Hiramatsu, K., Heat denaturation of bovine serum albumin in alkaline pH region, Biochim. Biophys. Acta 328: 323–333 (1973).Google Scholar
  23. 23.
    Edwards, F. B., Rombauer, R. B., and Campbell, B. J., Thiol-disulfide interchange reactions between serum albumin monomer and dimer, Biochim. Biophys. Acta 194: 234–245 (1969).Google Scholar
  24. 24.
    Isles, T. E., and Jocelyn, P. C., The reaction of protein thiol groups with some disulphides, Biochem. J. 88: 84–88 (1963).Google Scholar
  25. 25.
    Sunderman, F. W., Jr., Studies on the serum proteins. VI. Recent advances in clinical interpretation of electrophoretic fractionations, Am. J. Clin. Pathol. 42: 1–21 (1964).Google Scholar
  26. 26.
    Natelson, S., Techniques of Clinical Chemistry, 3rd ed., Charles C Thomas, Springfield, Ill. (1971), pp. 606–608.Google Scholar
  27. 27.
    Natelson, S., Immature Infant, Dept. Public Health, Springfield, Ill. (1952), pp. 14–49.Google Scholar
  28. 28.
    Chan, H., and Waterlow, J. C., The protein requirement of infants at the age of about one year, Brit. J. Nutr. 20: 775–782 (1966).CrossRefGoogle Scholar
  29. 29.
    James, W. P., and Hay, A. M., Albumin Metabolism: Effect of the nutritional state and the dietary protein intake, J. Clin. Invest. 47: 1958–1972 (1968).CrossRefGoogle Scholar
  30. 30.
    Tavill, A. S., Craigie, A., and Rosenoer, V. M., The measurement of the synthetic rate of albumin in man, Clin. Sci. 34: 1–28 (1968).Google Scholar
  31. 31.
    Bianchi, R., Mariani, G., Pilo, A., and Toni, M. G., Short term determination of serum albumin catabolism in man from plasma data only J. Nucl. Biol. Med. 17: 117–118 (1973).Google Scholar
  32. 32.
    Mathews, R. W., Oronsky, A., and Haschemeyer, A. E., Effect of thyroid hormone on polypeptide chain assembly kinetics in liver protein synthesis in vivo, J. Biol. Chem. 248: 1329–1333 (1973).Google Scholar
  33. 32a.
    Rothschild, M. A., Oratz, M., and Schreiber, S. S., Albumin synthesis, N. Engl. J. Med. 286: 748–757, 816–821 (1972).CrossRefGoogle Scholar
  34. 33.
    Peters, T., Jr., Fleischer, B., and Fleischer, S., The biosynthesis of rat serum albumin. IV. Apparent passage of albumin through the Golgi apparatus during secretion, J. Biol. Chem. 246: 240–244 (1971).Google Scholar
  35. 34.
    Feldman, G., Penaud-Laurencin, J., Crassous, J., and Benhamou, J. P., Albumin synthesis by human liver cells: Its morphological demonstration, Gastroenterology 63: 1036–1048 (1972).Google Scholar
  36. 35.
    Berson, S. A., Yalow, R. S., Schreiber, S. S., and Post, J., Tracer experiments with 1131-labeled human serum albumin: Distribution and degradation studies, J. Clin. Invest. 32: 746–768 (1953).CrossRefGoogle Scholar
  37. 36.
    Rothschild, M. A., Bauman, A., Yalow, R. S., and Berson, S. A., Tissue distribution of 1131 labeled human serum albumin following intravenous administration, J. Clin. Invest. 34: 1354–1358 (1955).CrossRefGoogle Scholar
  38. 37.
    Warshaw, M. M., and Pesce, A. J., Electrophoretic and immunologic analysis of amniotic fluid, in Amniotic Fluid, S. Natelson, A. Scommegna, and M. B. Epstein, Eds., Wiley, New York (1974), pp. 125–144.Google Scholar
  39. 38.
    Tidstrom, B., Quantitative determination of protein in normal urine, Scand. J. Clin. Lab. Invest. 15: 167–172 (1963).CrossRefGoogle Scholar
  40. 39.
    Birzis, L., Carter, C. H., and Maren, T. H., Effect of acetazolamide on CSF pressure and electrolytes in hydrocephalus, Neurology 8: 522–528 (1958).CrossRefGoogle Scholar
  41. 40.
    Josephson, A. S., and Lockwood, D. W., Immunoelectrophoretic studies of the protein components of normal tears, J. Immunol. 93: 532–539 (1964).Google Scholar
  42. 41.
    Maeno, M., and Kiyosawa, I., Physicochemical properties of human lactalbumin, Biochem. J. 83: 271–273 (1962).Google Scholar
  43. 42.
    Fasel, J., and Scheidegger, J. J., Immuno-electrophoretic study of normal and pathological human gastric juices, Gastroenterologia 94: 236–250 (1960).CrossRefGoogle Scholar
  44. 43.
    Rawson, A. J., Human bile proteins. I. Proteins identified by antibody to human serum, Clin. Chem. 8: 310–317 (1961).Google Scholar
  45. 44.
    Mariani, G., Bonaguidi, F., and Bianchi, R., A reappraisal of albumin catabolism and distribution from radioiodinated tracer studies from patients with renal failure, J. Nucl. Med. Allied Sci. 21: 113–118 (1977).Google Scholar
  46. 45.
    Ng, A., Owen, J. A., and Pandanyi, R., Haptoglobins in pleural and ascitic fluids, Clin. Chim. Acta 8: 145–148 (1963).CrossRefGoogle Scholar
  47. 46.
    Sundblad, L. E., Jonson, E., and Nettelbladt, E., Permeability of the synovial membrane to glycoproteins, Nature 192: 1192 (1961).CrossRefGoogle Scholar
  48. 47.
    Nettelbladt, E., and Sundblad, L., Haptoglobins in serum and synovial fluid, Acta Rheumatol. Scand. 11: 11–14 (1965).Google Scholar
  49. 48.
    Binette, J. P., and Schmid, K., Studies of the human synovial fluid by starch gel electrophoresis, Arthritis Rheumat. 4: 104–105 (1961).Google Scholar
  50. 49.
    Humphrey, J. H., Neuberger, A., and Perkins, D. J., Observations on the presence of plasma proteins in skin and tendon, Biochem. J. 66: 390–399 (1957).Google Scholar
  51. 50.
    Gitlin, D., Nakasato, D., and Richardson, W. R., Myoalbumin, plasma albumin and interstitial fluid in human and rabbit muscles, J. Clin. Invest. 34: 935 (1955).Google Scholar
  52. 51.
    Beaven, G. H., Chen, S. H., d’Albis, A., and Gratzer, W. B., A spectroscopic study of the haemin-human-serum-albumin system, Eur. J. Biochem. 41: 539–546 (1974).CrossRefGoogle Scholar
  53. 52.
    Rosner, W., and Deakins, S. M., Testosterone-binding globulins in human plasma: studies on sex distribution and specificity, J. Clin. Invest. 47: 2109–2116 (1968).CrossRefGoogle Scholar
  54. 53.
    Yates, F. E., and Urquhart, J., Control of plasma concentrations of adrenocortical hormones, Physiol. Rev. 42: 359–433 (1962).Google Scholar
  55. 54.
    Meyer, C. J., Layne, D. S., Tait, J. F., and Pincus, G., The binding of aldosterone to plasma proteins in normal, pregnant, and steroid-treated women, J. Clin. Invest. 40: 1663–1671 (1961).CrossRefGoogle Scholar
  56. 55.
    Daughaday, W. H., Steroid protein interactions, Physiol. Rev. 39: 885–902 (1959).Google Scholar
  57. 56.
    Unger, W. G., Binding of prostaglandin to human serum albumin, J. Pharm Pharmacol. 24: 470–477 (1972).CrossRefGoogle Scholar
  58. 57.
    Whitehouse, M. W., Kippen, I., Klinenberg, J. R., Schlosstein, L., Campion, D. S., and Bluestone, R., Increasing excretion of urate with displacing agents in man, Ann. N.Y. Acad. Sci. 226: 309–318 (1973).CrossRefGoogle Scholar
  59. 58.
    Brodersen, R., Competitive binding of bilirubin and other substances to plasma albumin: equilibrium studies in vitro, Birth Defects 12: 173–183 (1976).Google Scholar
  60. 59.
    Cooke, J. R., and Roberts, L. B., The binding of bilirubin to serum proteins, Clin. Chim. Acta 26: 425–436 (1969).CrossRefGoogle Scholar
  61. 60.
    Vallner, J. J., Binding of drugs by albumin and plasma protein, J. Pharm. Sci. 66: 447–463 (1977).CrossRefGoogle Scholar
  62. 61.
    Krasner, J., Giacoia, G. P., and Yaffe, S. J., Drug-protein binding in the newborn infant, Ann. N.Y. Acad. Sci. 226: 101–114 (1973).CrossRefGoogle Scholar
  63. 62.
    Andersson, L. O., Rehnstrom, A., and Eaker, D. L., Studies on “nonspecific” binding: the nature of the binding of fluorescein to bovine serum albumin, Eur. J. Biochem. 20: 371–378 (1971).CrossRefGoogle Scholar
  64. 63.
    Spector, A. A., Fatty acid binding to plasma albumin, J. Lipid Res. 16: 165–179 (1975).Google Scholar
  65. 64.
    Oakes, J., Magnetic-resonance studies of the interactions between bovine-serum albumin and surfactants. I. Nature of binding site, Eur. J. Biochem. 36: 553–558 (1973).CrossRefGoogle Scholar
  66. 65.
    Bradshaw, R. A., and Peters, T., Jr., The amino acid sequence of peptide (1–24) of rat and human serum albumins, J. Biol. Chem. 244: 5582–5589 (1968).Google Scholar
  67. 66.
    Nandedkhar, A. K., Nurse, C. E., and Friedberg, F., Mn2+ binding by plasma proteins, Int. J. Pept. Protein Res. 5: 279–281 (1973).CrossRefGoogle Scholar
  68. 67.
    Pedersen, K. O., Binding of calcium to serum albumin. III. Influence of ionic strength and ionic medium, Scand. J. Clin. Lab. Invest. 29:427–432, 30:89–94, 321–329 (1972).Google Scholar
  69. 68.
    Stewart, K. K., and Doherty, R. F., Resolution of DL tryptophan by affinity chromatography on bovine-serum albumin agarose columns, Proc. Natl. Acad. Sci. 70: 2850–2852 (1973).CrossRefGoogle Scholar
  70. 69.
    Anderson, J. A., Chang, H. W., and Grandjean, C. J., Nature of the binding site of pyridoxal 5’-phosphate to bovine serum albumin, Biochemistry 10: 2408–2414 (1971).CrossRefGoogle Scholar
  71. 70.
    Kamisaka, K., Listowsky, I., Fleischner, G., Gatmaitan, Z., and Arias, I. M., The binding of bilirubin and other organic anions to serum albumin and ligandin (y protein), Birth Defects 12: 156–167 (1976).Google Scholar
  72. 71.
    Reed, R. G., Feldhoff, R. C., Chute, O. L., and Peters, T., Jr., Fragments of bovine serum albumin produced by limited proteolysis: Conformation and ligand binding, Biochemistry 14: 4578–4583 (1975).CrossRefGoogle Scholar
  73. 72.
    Kirsch, R., Frith, L., Black, E., and Hoffenberg, R., Regulation of albumin synthesis and catabolism by alteration of dietary protein, Nature 217: 578–579 (1968).CrossRefGoogle Scholar
  74. 73.
    Morgan, E. H., and Peters, T., Jr., The biosynthesis of rat serum albumin. V. Effect of protein depletion and refeeding on albumin and transferrin synthesis, J. Biol. Chem. 246: 3500–3507 (1971).Google Scholar
  75. 74.
    Allen, R. E., Raines, P. L., and Regen, D. M., Regulatory significance of transfer RNA charging levels. I. Measurements of changing levels in livers of chow fed rats, fasting cats, and rats fed balanced or imbalanced mixtures of amino acids, Biochim. Biophys. Acta 190: 323–336 (1969).Google Scholar
  76. 75.
    Haselkorn, R., and Rothman-Denes, L. B., Protein synthesis, Ann. Rev. Biochem. 42: 397–429 (1973).CrossRefGoogle Scholar
  77. 76.
    Dich, J., Hansen, S. E., and Thieden, H. I. D., Effect of albumin concentration and colloid osmotic pressure on albumin synthesis in the perfused rat liver, Acta Physiol. Scand. 89: 352–358 (1973).CrossRefGoogle Scholar
  78. 77.
    Rothschild, M. A., Oratz, M., and Schreiber, S. S., Albumin metabolism, Gastroenterology 64: 324–337 (1973).Google Scholar
  79. 78.
    Marsh, J. B., and Drabkin, D. L., Metabolic channeling in experimental nephrosis. IV. Net synthesis of plasma albumin by liver slices from normal and nephritic rats, J. Biol. Chem. 230: 1063–1071 (1958).Google Scholar
  80. 79.
    Garren, L. D., Richardson, A. P., Jr., and Crocco, R. M., Studies on the role of ribosomes in the regulation of protein synthesis in hypophysectomized and thyroidectomized rats, J. Biol. Chem. 242: 650–656 (1967).Google Scholar
  81. 80.
    Drews, J., and Brawerman, G., Alterations in the nature of ribonucleic acid synthesized in rat liver during regeneration and after cortisol administration, J. Biol. Chem. 242: 801–808 (1967).Google Scholar
  82. 81.
    Kaplan, S. A., and Shimizu, C. S. N., Free amino acid and amine concentrations in liver: effects of hydrocortisone and fasting, Am. J. Physiol. 202: 695–698 (1962).Google Scholar
  83. 82.
    Sterling, K., The effect of Cushing’s syndrome upon serum albumin metabolism, J. Clin. Invest. 39: 1900–1908 (1960).CrossRefGoogle Scholar
  84. 83.
    Reaven, E. P., Peterson, D. T., and Reaven, G. M., The effect of experimental diabetes mellitus and insulin replacement on hepatic ultrastructure and protein synthesis, J. Clin. Invest. 52: 248–262 (1973).CrossRefGoogle Scholar
  85. 84.
    Widnell, C. C., and Tata, J. R., Additive effects of thyroid hormone, growth hormone and testosterone on deoxyribonucleic acid-dependent ribonucleic acid polymerase in rat-liver nuclei, Biochem. J. 98: 621–629 (1966).Google Scholar
  86. 85.
    Cushman, S. W., Structure-function relationships in the adipose cell. II. Pinocytosis and factors influencing its activity in the isolated adipose cell, J. Cell. Biol. 46: 342–353 (1970).CrossRefGoogle Scholar
  87. 86.
    Nelson, C. E., and Guttman, S. I., Serum protein electrophoresis of some amphibia (caecelidae, rhinophrynidae, microhylidae), Camp. Biochem. Physiol. B 44: 423–428 (1973).Google Scholar
  88. 87.
    Fanti, P., Evolutionary trends in plasma mercaptalbumin composition, Comp. Biochem. Physiol. B 42: 403–408 (1972).CrossRefGoogle Scholar
  89. 88.
    Nagano, H., Shimada, T., and Shukuya, R., Purification and properties of serum albumin from rana catesbeiana, Biochim. Biophys. Acta 278: 101–109 (1972).Google Scholar
  90. 89.
    Wallace, D. G., and Wilson, A. C., Comparison of frog albumins with those of other vertebrates, J. Mol. Evol. 2: 72–86 (1972).CrossRefGoogle Scholar
  91. 90.
    Scheurlen, P. G., On serum protein changes in diabetes, Klin. Wochschr. 33: 198–205 (1955).CrossRefGoogle Scholar
  92. 91.
    Knedel, M., A new hereditary anomaly of the blood proteins, Clin. Chim. Acta 3: 72–75 (1958).CrossRefGoogle Scholar
  93. 91a.
    Gitlin, D., Schmid, K., Earle, D. P., and Givelber, H., Observations on double albumin: II. A peptide difference between two genetically determined human serum albumins, J. Clin. Invest. 40: 820–827 (1961).CrossRefGoogle Scholar
  94. 92.
    Nennstiel, H. J. and Becht, T., Hereditary occurrence of an albumin fraction in electrophoretic diagrams, Klin. Wochenschr. 35: 689 (1957).CrossRefGoogle Scholar
  95. 93.
    Weitkamp, L. R., Salzano, F. M., Neel, J. V., Porta, F., Geerdink, R. A., and Tarnoky, A. L., Human serum albumin: twenty-three genetic variants and their population distribution, Ann. Hum. Genet. 36: 381–392 (1973).CrossRefGoogle Scholar
  96. 94.
    Winter, W. P., Weitkamp, L. R., and Rucknagel, D. L., Amino acid substitution in two identical inherited human serum albumin variants: albumin Oliphant and albumin Ann Arbor, Biochemistry 11: 889–896 (1972).Google Scholar
  97. 95.
    Earle, D. P., Hutt, M. P., Schmid, K., and Gitlin, D., Observations on double albumin: a genetically transmitted serum protein anomaly, J. Clin. Invest. 38: 1412–1420 (1959).CrossRefGoogle Scholar
  98. 96.
    Bell, H. E., Nicholson, S. F., and Thompson, Z. R., Bisalbuminemia of the fast type with a homozygote, Clin. Chim. Acta 15: 247–252 (1967).CrossRefGoogle Scholar
  99. 97.
    Melartin, L., and Blumberg, B. S., Albumin Naskapi: A new variant of serum albumin, Science 153: 1664–1666 (1966).CrossRefGoogle Scholar
  100. 98.
    Wieme, R. J., On the presence of two albumins in certain normal human sera and its genetic determination, Clin. Chim. Acta. 5: 443–145 (1960).CrossRefGoogle Scholar
  101. 99.
    Melartin, L., Blumberg, B. S., and Lisker, R., Albumin Mexico, a new variant of serum albumin, Nature 215: 1288–1289 (1967).CrossRefGoogle Scholar
  102. 100.
    Blumberg, B. S., Martin, J. R., and Melartin, L., Alloalbuminemia. Albumin Naskapi in Indians of the Ungava, JAMA 203: 114–119 (1968).CrossRefGoogle Scholar
  103. 101.
    Efremov, G., and Braend, M., Serum albumin polymorphism in man, Science 146: 1679–1680 (1964).CrossRefGoogle Scholar
  104. 102.
    Hosty, T. A., Caputo, M. J., and Hollenbeck, M., Bisalbuminemia associated with albumin dye binding defect, Clin. Chim. Acta 36: 579–580 (1972).CrossRefGoogle Scholar
  105. 103.
    Fraser, G. R., Harris, H., and Robson, E. B., A new genetically determined plasma-protein in man, Lancet 1: 1023–1024 (1959).CrossRefGoogle Scholar
  106. 104.
    Laurell, C. B., and Niléhn, J. E., A new type of inherited serum albumin anomaly, J. Clin. Invest. 45: 1935–1945 (1966).CrossRefGoogle Scholar
  107. 105.
    Jamieson, G. A., and Ganguly, P., Studies on a genetically determined albumin dimer, Biochem. Genet. 3: 403–416 (1969).CrossRefGoogle Scholar
  108. 106.
    Weitkamp, L. R., Arends, T., Gallango, M. L., Neel, J. V., Schultz, J., and Shreffler, D. C., The genetic structure of a tribal population, the Yanomama Indians: 3. Seven serum protein systems, Ann. Hum. Genet. 35: 271–279 (1972).CrossRefGoogle Scholar
  109. 107.
    Lie-Injo, L. E., Weitkamp, L. R., Kosasih, E. N., Bolton, J. M., and Moore, C. L., Unusual albumin variants in Indonesians and Malayan aborigines, Hum. Hered. 21: 376–383 (1971).CrossRefGoogle Scholar
  110. 108.
    Bennhold, H., Peeters, H., and Roth, E., On a case of complete analbuminemia without obvious clinical signs of illness, Verh. Deutsch. Ges. Inn. Med. 60: 630–634 (1954).Google Scholar
  111. 109.
    Bennhold, H., and Kallee, E., Comparative studies on the half-life of 1131 labeled albumins and nonradioactive human serum albumin in a case of analbuminemia, J. Clin. Invest. 38: 863–872 (1959).CrossRefGoogle Scholar
  112. 110.
    Shetlar, M. R., Shetlar, C. L., Payne, R. W., Stidworthy, G., and Mock, D., Absence of serum albumin associated with rheumatoid arthritis, Clin. Chem. 5: 377 (1959).Google Scholar
  113. 111.
    Irunberry, J., Abbadi, M., Khati, B., Benabaii, M., and Raeha, E., Three cases of analbuminemia among kindred, Rev. Eur. Etud. Clin. Biol. 16: 371–379 (1971).Google Scholar
  114. 112.
    Keller, H., Morell, A., Noseda, G., and Riva, G., Pathological physiological analbuminemia in one case, Schweiz. Med. Wochenschr. 102:33–41, 71–78 (1972).Google Scholar
  115. 113.
    Waldmann, T. A., Gordon, R. S., Jr., and Rosse, W., Studies on the metabolism of the serum proteins and lipids in a patient with analbuminemia, Am. J. Med. 37: 960–968 (1964).CrossRefGoogle Scholar
  116. 114.
    Gitlin, D., Cravioto, J., Frenk, S., Montano, E. L., Galvan, R. R., Gómez, F., and Janeway, C. A., Albumin metabolism in children with protein malnutrition, J. Clin. Invest. 37: 682–686 (1958).CrossRefGoogle Scholar
  117. 115.
    Bronsky, D., Hyman, S., and Armstrong, S. H. V., The effect of supplementary sulfur-containing dietary amino acids upon the die-away plots of auto-synthesized albumins and gamma globulins labeled with S35, J. Clin. Med. 50: 348–357 (1957).Google Scholar
  118. 116.
    Lewis, L. A., and Page, I. H., Electrophoretic and ultracentrifugal analysis of serum lipoproteins of normal, nephrotic and hypertensive persons, Circulation 7: 707–717 (1953).CrossRefGoogle Scholar
  119. 117.
    Franklin, M., Bean, W. B., Paul, W. D., Routh, J. I., DeLa Huerga, J., and Popper, H., I. Comparison of serum and plasma electrophoretic patterns in liver disease, with special reference to fibrinogen and gamma globulin patterns. I.. Gamma globulin in chronic liver disease, J. Clin. Invest. 30:718–728, 729–737 (1951).Google Scholar
  120. 118.
    Banerjee, S., and Chatterjee, K. P., Different fractions of plasma proteins in some infectious diseases, Proc. Soc. Exp. Biol. Med. 94: 474–476 (1957).Google Scholar
  121. 119.
    Boerma, F. W., and Mandema, M., A serologic investigation of Waldenstrom’s macroglobulinemia by means of the agar diffusion method, J. Lab. Clin. Med. 49: 358–369 (1957).Google Scholar
  122. 120.
    DeMaeyer, E. M., Early signs of protein-caloric malnutrition, Bibl. Nutr. Dieta 23: 1–8 (1976).Google Scholar
  123. 121.
    Meindok, H., Diagnostic significance of hypoalbuminemia, J. Am. Geriat. Soc. 15: 1067–1071 (1967).Google Scholar
  124. 122.
    Waterlow, J. C., Observations on the mechanism of adaptation to low protein intakes, Lancet 2: 1091–1097 (1968).CrossRefGoogle Scholar
  125. 123.
    Bianchi, P., Mariani, G., Pilo, A., Mechanisms of albumin loss during peritoneal dialysis in man, Eur. J. Clin. Invest. 5: 409–413 (1975).Google Scholar
  126. 124.
    Owen, J. A., Effect of injury on plasma proteins, Adv. Clin. Chem. 9: 1–41 (1967).CrossRefGoogle Scholar
  127. 125.
    Toporek, M., Effects of whole blood or albumin fraction from tumor-bearing rats on liver protein synthesis, Cancer Res. 33: 2579–2583 (1973).Google Scholar
  128. 126.
    Ballantyne, F. C., Tilstone, W. J., and Fleck, A., Effect of injury on albumin synthesis in the rabbit, Brit. J. Exp. Pathol. 54: 409–415 (1973).Google Scholar
  129. 127.
    Enwonwu, CoO., and Munro, H. N., Changes in liver polyribosome patterns following administration of hydrocortisone and actinomycin D, Biochim. Biophys. Acta 283: 264–276 (1971).Google Scholar
  130. 128.
    Thompson, W. L., Rational use of albumin and plasma substitutes, Johns Hopkins Med. J. 136: 220–225 (1975).Google Scholar
  131. 129.
    Lundholm, K., Albumin-various viewpoints on its therapeutic use, Lakartidningen 74: 2694–2698 (1977).Google Scholar
  132. 130.
    Mackie, J. A., Jr., Aryan, D. A., Mullen, J. L., Jr., and Rawnsley, H. M., Elevated serum alkaline phosphatase levels after the administration of certain preparations of human albumin, Am. J. Surg. 121: 57–61 (1971).CrossRefGoogle Scholar
  133. 131.
    Cohn, E. J., Strong, L. E., Hughes, W. L., Jr., Mulford, D. J., Ashworth, J. N., Melin, M., and Taylor, H. L., Preparation and properties of serum and plasma proteins. IV. A system for the separation into fractions of the protein and lipoprotein components of biological tissues and fluids, J. Am. Chem. Soc. 68: 459–475 (1946).CrossRefGoogle Scholar
  134. 132.
    Levine, S., Solubilization of bovine albumin in nonaqueous media, Arch. Biochem. Biophys. 50: 515–517 (1954).CrossRefGoogle Scholar
  135. 133.
    Hughes, W. L., and Dintzis, H. M., Crystallization of the mercury dimers of human and bovine mercaptalbumin, J. Biol. Chem. 239: 845–849 (1964).Google Scholar
  136. 134.
    Sober, H. A., and Peterson, E. H., Protein chromatography on ion exchange cellulose, Fed. Proc. 17: 1116–1126 (1958).Google Scholar
  137. 135.
    Hierowski, M., and Brodersen, R., Covalent binding of bilirubin to agarose and use of the product for affinity chromatography of serum albumin, Biochim. Biophys. Acta. 354: 121–129 (1974).CrossRefGoogle Scholar
  138. 136.
    Travis, J., and Pannell, R., Selective removal of albumin from plasma by affinity chromatography, Clin. Chim. Acta. 49: 49–52 (1973).CrossRefGoogle Scholar
  139. 137.
    Hiller, A., Plazin, J., and VanSlyke, D. D., Substitutes for saponin in determination of oxygen and carbon monoxide of blood, J. Biol. Chem. 176: 1431–1437 (1948).Google Scholar
  140. 138.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193: 265–275 (1951).Google Scholar
  141. 139.
    Albanese, A. A., Irby, V., and Saur, B., Colorimetric estimation of proteins in various body fluids, J. Biol. Chem. 166: 231–237 (1946).Google Scholar
  142. 140.
    Natelson, S., Techniques of Clinical Chemistry, Charles C Thomas, Springfield, Ill. (1971), pp. 606–612.Google Scholar
  143. 141.
    Aryan, D. A., and Ritz, A., Measurement of serum albumin by the HABA-dye technique: A study of the effect of free and conjugated bilirubin of bile acids and of certain drugs, Clin. Chim. Acta 26: 505–516 (1969).CrossRefGoogle Scholar
  144. 142.
    Doumas, B. T., Biggs, H. G., and Arends, R. L., Determination of serum albumin, Stand. Methods Clin. Chem. 7: 175–188 (1972).Google Scholar
  145. 143.
    Gaizutis, M., Pesce, A., and Lewy, J. E., Determination of nanogram amounts of albumin by radioimmunoassay, Microchem. J. 17: 327–337 (1972).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Samuel Natelson
    • 1
  • Ethan A. Natelson
    • 2
  1. 1.Department of Environmental Practice, College of Veterinary MedicineUniversity of TennesseeKnoxvilleUSA
  2. 2.University of Texas Medical School and St. Joseph HospitalHoustonUSA

Personalised recommendations