Advertisement

Vitamin D Transport: Gc Globulins

  • Samuel Natelson
  • Ethan A. Natelson

Abstract

After absorption, vitamin D is converted to 25-hydroxy-vitamin D in the liver (see Volume 1, pp. 149–154). From there it is transported in the plasma to the kidney and other organs for further metabolism (Figure 13.1).

Keywords

Sialic Acid Primary Hyperparathyroidism Chronic Renal Disease Group Specific Component Serum Concentration Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Reading

  1. Drezner, M. K., and Harrelson, J. M., Newer knowledge of vitamin D and its metabolites in health and disease, Clin. Orthop. 139: 206–231 (1979).Google Scholar
  2. Constans, J., and Cleve, H., Group specific component. Report on 1st International Workshop, Hum. Genet. 48: 143–149 (1979).CrossRefGoogle Scholar
  3. DeLuca, H. F., Vitamin D Metabolism and Function, Springer Verlag, New York (1979).Google Scholar
  4. Norman, A. W., Vitamin D; The Calcium Homeostatic Hormone. Academic Press, New York (1979).Google Scholar
  5. Schaefer, K., and Herrath, D. V., Eds., Vitamin D: Basic Research and Its Clinical Applications, Walter DeGruyter, Hawthorne, New York (1979).Google Scholar
  6. Cleve, H., and Patutschnick, W., Neuraminidase treatment reveals sialic acid differences in certain genetic variants of the Gc system (Vitamin D binding protein), Hum. Genet. 47: 193–198 (1979).CrossRefGoogle Scholar

References

  1. 1.
    Haddad, J. G., Jr., and Chyu, K. J., 25-hydroxycholecalciferol-binding globulin in human plasma, Biochim. Biophys. Acta 248: 471–481 (1971).Google Scholar
  2. 2.
    Peterson, P. A., Isolation and partial characterization of a human vitamin D-binding plasma protein, J. Biol. Chem. 246: 7748–7754 (1971).Google Scholar
  3. 3.
    Kida, K., and Goodman, D. S., Studies on the transport of vitamin D and of 25-hydroxyvitamin D in human plasma, J. Lipid Res. 17: 485–490 (1976).Google Scholar
  4. 4.
    Imawari, M., Kida, K., and Goodman, D. S., The transport of vitamin D and its 25-hydroxy metabolite in human plasma: Isolation and partial characterization of vitamin D and 25-hydroxyvitamin D binding protein, J. Clin. Invest. 58: 514–523 (1976).CrossRefGoogle Scholar
  5. 5.
    Imawari, M., and Goodman, D. S., Immunological and immunoassay studies of the binding protein for Vitamin D and its metabolites in human serum, J. Clin. Invest. 59: 432–442 (1977).CrossRefGoogle Scholar
  6. 6.
    Haddad, J. G., Jr., and Walgate, J., 25-hydroxy-vitamin D transport in human plasma: Isolation and partial characterization of calcifidiol-binding protein, J. Biol. Chem. 251: 4803–4809 (1976).Google Scholar
  7. 7.
    Hirschfeld, J., Immuno-electrophoretic of qualitative. demonstration o, üauiffer- ences in human sera and their relation to the haptoglobins, Acta Pathol. Microbiol. Scand. 47: 160–168 (1959).CrossRefGoogle Scholar
  8. 8.
    Schultz, H. E., Biel, H., Haupt, H., and Heide, K., On the Gc components of Hirschfeld, Naturwissenschaften 49: 108 (1962).CrossRefGoogle Scholar
  9. 9.
    Bowman, B. H., Composition and subunit, structure of the inherited group-specific protein of human serum, Biochemistry 8: 4327–4335 (1969).CrossRefGoogle Scholar
  10. 10.
    Melartin, L., Hirvonen, T., Kaarsalo, E., and Toivanin, P., Group specific components and transferrins in human fetal sera, Scand. J. Haematol. 3: 117–122 (1966).CrossRefGoogle Scholar
  11. 11.
    Toivanen, P., Rossi, T., and Hirvonen, T., The concentration of Gc globulin and transferrin in human fetal and infant sera, Scand. J. Haematol. 6: 113–118 (1969).CrossRefGoogle Scholar
  12. 12.
    Reinskou, T., Gc System, Ser. Haematol. (N.S.) 1: 21–37 (1968).Google Scholar
  13. 13.
    Herbich, J., Frequency of occurrence of the Gc variants in the people of Vienna and suburbs: Usefulness of this system in forensic serology, Wien. Klin. Wochenschr. 75: 803–806 (1963).Google Scholar
  14. 14.
    Hirschfeld, J., The Gc system, Progr. Allergy 6: 155–186 (1962).Google Scholar
  15. 15.
    Cleve, H., Kirk, R. L., Parker, W. C., Beam, A. G., Schacht, L. E., Kleinman, H., and Horsfall, W. R., Two genetic variants of the group specific components of human serum: Gc Chippewa and Gc Aborigine, Am. J. Hum. Genet. 15: 368–379 (1963).Google Scholar
  16. 16.
    Parker, W. C., Cleve, H., and Beam, A. G., Determination of phenotypes in the human groups specific components (Gc) system by Starch gel electrophoresis, Am. J. Hum. Genet. 15: 353–367 (1963).Google Scholar
  17. 17.
    Peacock, A. C., Bunting, S. L., and Queen, K. G., Serum protein electrophoresis in acrylamide gel: patterns from normal human subjects, Science 147: 1451–1453 (1965).CrossRefGoogle Scholar
  18. 18.
    Hirschfeld, J., and Heiken, A., Application of the Gc system in paternity cases, Am. J. Hum. Genet. 15: 19 (1963).Google Scholar
  19. 19.
    Cavalli-Sforza, L. L., Daiger, S. P., and Rummel, D. P., Detection of genetic variation with radioactive ligands. I. Electrophoretic screening of plasma proteins with a selected panel of compounds, Am. J. Hum. Genet. 29: 581–592 (1977).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Samuel Natelson
    • 1
  • Ethan A. Natelson
    • 2
  1. 1.Department of Environmental Practice, College of Veterinary MedicineUniversity of TennesseeKnoxvilleUSA
  2. 2.University of Texas Medical School and St. Joseph HospitalHoustonUSA

Personalised recommendations