Advertisement

Photoreceptors for Circadian Rhythms

  • Helga Ninnemann

Abstract

Living in our hectic, jet-set and jet-lag society, most of us have experienced the discomforts imposed by a rapid transfer into shifted day-night cycles, differing in phase considerably from the ones we are used to. Our bodies usually need some days to readjust to the new environment, before our endogenous rhythms have accommodated the changed conditions.

Keywords

Circadian Clock Pineal Gland Action Spectrum Pineal Organ Harderian Gland 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Suggested Reading List

  1. Aschoff, J., (ed.), Circadian Clocks, Proceedings of the Feldafing Summer School 1964, North-Holland, Amsterdam, 1965.Google Scholar
  2. Bierhuizen, J. F. B. (ed.), Circadian Rhythmicity, Proceedings of the International Symposium on Circadian Rhythmicity, Wageningen, Netherlands, 1971, Centre for Agricultural Publishing and Documentation, Wageningen, 1972.Google Scholar
  3. Bünning, E., The Physiological Clock, 3rd English ed., The English Universities Press Ltd. London, Springer-Verlag New York, 1973.Google Scholar
  4. Bünning, E., Die Physiologische Uhr, Circadiane Rhythmik und Biochronometrie, 3rd revised German ed., Springer-Verlag, Berlin 1977.Google Scholar
  5. Chance, B., Pye, E. K., Ghosh, A. K., and Hess, B., Biological and Biochemical Oscillators, Academic Press New York, 1973.Google Scholar
  6. Chovnick, A., (ed.). Biological Clocks, Cold Spring Harbor Symposia on Quantitative Biology, Vol. 25, The Biological Laboratory, Cold Spring Harbor, New York, 1960.Google Scholar
  7. Hastings, J. W., and Schweiger, H-G. (eds.), The Molecular Basis of Circadian Rhythms, Report of the Dahlem Workshop on The Molecular Basis of Circadian Rhythms, Berlin 1975, Dahlem Konferenzen, 1976.Google Scholar
  8. Menaker, M., (ed.), Biochronometry, Proceedings of a Symposium, Friday Harbor, Wash. 1969, National Academy of Sciences, Washington D.C., 1971.Google Scholar
  9. Palmer, J. D., Biological Clocks in Marine Organisms: The Control of Physiological and Behavioral Tidal Rhythms, J. Wiley and Sons, New York, 1974.Google Scholar
  10. Rensing, L., Biologische Rhythmen und Regulation, G. Fischer Verlag, Stuttgart, 1973.Google Scholar
  11. Richter, C. P., Biological Clocks in Medicine and Psychiatry, Thomas, Springfield, Illinois, 1965.Google Scholar
  12. Rohles, F. H. (ed.), Circadian Rhythms in Nonhuman Primates, Bibliotheca Primatologica, No. 9, S. Karger, Basel/New York, 1969.Google Scholar
  13. Saunders, D. S., An Introduction to Biological Rhythms, J. Wiley and Sons, New York, 1977.Google Scholar
  14. Schweiger, H-G., and Schweiger, M., 1977, Circadian Rhythms in Unicellular Organisms: An Endeavor to Explain the Molecular Mechanism, Int. Rev. Cytol. 51:315–342.Google Scholar
  15. Sweeney, B. M., Rhythmic Phenomena in Plants, Academic Press, New York, 1969.Google Scholar
  16. Withrow, R. B. (ed.), Photoperiodism and Related Phenomena in Plants and Animals, Publication No. 55 of the American Association for the Advancement of Science, Washington, D.C., 1959.Google Scholar

References

  1. Adamich, M., Laris, P. C., and Sweeney, B. M., 1976, In vivo evidence for a circadian rhythm in membranes of Gonyaulax, Nature 261:583–585.Google Scholar
  2. Adler, K., 1968, Extraoptic light entrapment of circadian rhythm in salamanders (Plethodon glutinosus), J. Herpetol. 2:176.Google Scholar
  3. Adler, K., 1969, Extraoptic phase shifting of circadian locomotor rhythm in salamanders, Science 164:1290–1292.Google Scholar
  4. Adler, K., 1970, The role of extraoptic photoreceptors in amphibian rhythms and orientation: a review, J. Herpetol. 4:99–112.Google Scholar
  5. Adler, K., 1971, Pineal end organ: role in extraoptic entrapment of circadian locomotor rhythm in frogs, in: Biochronometry (M. Menaker, ed.), pp. 342–350, National Academy of Science, Washington D.C.Google Scholar
  6. Adler, K., 1976, Extraocular photoreception in amphibians, Photochem. Photobiol. 23: 275–298.Google Scholar
  7. Aréchiga, H., 1977, Circadian rhythmicity in the nervous system of crustaceans, Fed. Proc. 36:2036–2041.Google Scholar
  8. Arthur, J. M., Guthrie, J. D., and Newell, J. M., 1930, Some effects of artificial climates on the growth and chemical composition of plants, Amer. J. Bot. 17:416–482.Google Scholar
  9. Arvanitaki, A., and Chalazonitis, N., 1961, Excitatory and inhibitory processes initiated by light and infrared radiations in single identifiable nerve cells (giant ganglion cells of Aplysiä) in: Nervous Inhibition, Friday Harbor Symposium Vol. 2 (E. Florey, ed.), pp.194–231, Pergamon Press, New York.Google Scholar
  10. Aschoff, J., 1955, Exogene und endogene Komponente der 24-Stunden Periodik bei Mensch and Tier, Naturwiss. 42:569–575.Google Scholar
  11. Aschoff, J., 1965, Orcadian rhythms in man, Science 148:1427–1432.Google Scholar
  12. Aschoff, J., and Pohl, H., 1970, Rhythmic variations in energy metabolism, Fed. Proc. 29:1541–1552.Google Scholar
  13. Aschoff, J., and Wever, R., 1962, Spontanperiodik des Menschen bei Ausschluss aller Zeitgeber, Naturwiss. 49:337–342.Google Scholar
  14. Aschoff, J., and Wever, R., 1976, Human circadian rhythms: a multioscillatory system, Fed. Proc. 35:2326–2332.Google Scholar
  15. Aschoff, J., Saint Paul, U. V., and Wever, R., 1971, Die Lebensdauer von Fliegen unter dem Einfluss von Zeit-Verschiebungen, Naturwiss. 58:574.Google Scholar
  16. Audesirk, G., and Strumwasser, F., 1975, Circadian rhythm of neuron R15 of Aplysia californica: in vivo photoentrainment, Proc. Natl. Acad. Sci. USA 72:2408–2412.Google Scholar
  17. Axelrod, J., 1974, The pineal gland: a neurochemical transducer, Science 174:1341–1348.Google Scholar
  18. Barnett, A., Ehret, C. F., and Wille, J. J., Jr., 1971, Testing the chronon theory of circadian timekeeping, in: Biochronometry (M. Menaker, ed.), pp. 637–650, National Academy of Science, Washington, D. C.Google Scholar
  19. Benoit, J., 1935a, Rôle des yeux dans Taction stimulante de la lumière sur le développement testiculaire chez le canard (avec démonstrations), Compt. Rend. Soc. Biol. 118:669–671.Google Scholar
  20. Benoit, J., 1935b, Stimulation par la lumière artificielle du développement testiculaire chez des canards aveugles par section du nerf optique (avec démonstrations), Compt. Rend. Soc. Biol. 120:133–136.Google Scholar
  21. Benoit, J., 1964, The role of the eye and of the hypothalamus in the photostimulation of gonads in the duck, Ann. N. Y. Acad. Sci. 117:204–217.Google Scholar
  22. Benoit, J., and Ott, L., 1938, Action de lumière de différentes longueurs d’onde sur la gonado- stimulation chez le canard maie impubère, Compt. Rend. Soc. Biol. 127:906–909.Google Scholar
  23. Binkley, S., MacBride, S. E., Klein, D. C., and Ralph, C. L., 1975, Regulation of pineal rhythms in chickens: Refractory period and nonvisual light perception, Endocrinol. 96:848–853.Google Scholar
  24. Bishop, J. M., and Herrnkind, W. F., 1976, Burying and molting of pink shrimp, Penaeus duorarum (Crustacea: Penaeidae), under selected photoperiods of white light and UV-light, Biol. Bull. 150:163–182.Google Scholar
  25. Bliss, D. E., 1962, Neuroendocrine control of locomotor activity in the land crab Gecarcinus lateralis, Mem. Soc. Endocrinol. 12:391–408.Google Scholar
  26. Block, G. D., 1971, Behavioral evidence for extraoptic entrainment in Aplysia, The Physiologist 14:112.Google Scholar
  27. Block, G. D., and Lickey, M. E., 1973, Extraocular photoreceptors and oscillators can control the circadian rhythm of behavioral activity in Aplysia, J. Comp. Physiol. 84:367–374.Google Scholar
  28. Block, G. D., and Smith, J. T., 1973, Cerebral photoreceptors in Aplysia, Comp. Biochem. Physiol. 46A :115–121.Google Scholar
  29. Block, G. D., Hudson, D. J., and Lickey, M. E., 1974, Extraocular photoreceptors can entrain the circadian oscillator in the eye of Aplysia, J. Comp. Physiol. 89:237–249.Google Scholar
  30. Bradshaw, W. E., 1972, Action spectra for photoperiodic response in a diapausing mosquito, Science 175:1361–1362.Google Scholar
  31. Brain, R. D., Freeberg, J., Weiss, C. V., and Briggs, W. R., 1976, Light-induced cytochrome reduction in membrane fractions from corn and Neurospora, Plant Physiol. 57:19.Google Scholar
  32. Brain, R. D., Freeberg, J., Weiss, C. V., and Briggs, W. R., 1977, Blue light-induced absorbance changes in membrane fractions from corn and Neurospora, Plant Physiol. 59:948–952.Google Scholar
  33. Bretzl, H., 1903, Botanische Forschungen des Alexanderzuges, B. G. Teubner, Leipzig; and Theophrast (372–287 B.C.), Theophrasti de historia et causis plantarum libri quindecem.Google Scholar
  34. Brody, S., and Martins, S. A., 1976, Circadian rhythms in Neurospora: the role of unsaturated fatty acids, in: Dahlem Workshop on The Molecular Basis of Circadian Rhythms (J. W. Hastings and H-G. Schweiger, eds.), pp. 245–246, Dahlem Konferenzen, Berlin.Google Scholar
  35. Brogårdh, T., and Johnsson, A., 1974, Effect of lithium on stomatal regulation, Z. Naturf. 29C:298–300.Google Scholar
  36. Brown, A. M., and Brown, H. M., 1973, Light response of a giant Aplysia neuron, J. Gen. Physiol. 62:239–254.Google Scholar
  37. Brown, F. A., Bennet, M. B., and Webb, H. M., 1954, Persistent daily and tidal rhythms of O2-consumption in fiddler crabs, J. Cell Comp. Physiol. 44:477–505.Google Scholar
  38. Bruce, V. G., and Minis, D. H., 1969, Circadian clock action spectrum in a photoperiodic moth, Science 163:583–585.Google Scholar
  39. Bruce, V. G., and Pittendrigh, 1956, Temperature independence in a unicellular “clock”, Proc. Nat. Acad. Sci. USA 42:676–682.Google Scholar
  40. Bruce, V. G., Weigth, F., and Pittendrigh, C. S., 1960, Resetting the sporulation rhythm in Pilobolus with short light flashes of high intensity, Science 131:728–730.Google Scholar
  41. Bühnemann, F., 1955, Das endodiurnale System der Oedogoniumzelle. IV. Die Wirkung verschiedener Spektralbereiche auf die Sporulations- und Mitoserhythmik, Planta 46:227–255.Google Scholar
  42. Bünning, E., 1931, Untersuchungen über die autonomen tagesperiodischen Bewegungen der Primärblätter von Phaseolus multiflorus, Jahrb. wiss. Bot. 75:439–480.Google Scholar
  43. Bünning, E., 1936, Die endonome Tagesrhythmik als Grundlage der photoperiodischen Reaktion, Ber. dt. bot. Ges. 54:590–607.Google Scholar
  44. Bünning, E., 1969a, Common features of photoperiodism in plants and animals, Photochem. Photobiol. 9:219–228.Google Scholar
  45. Bünning, E., 1969b, Die Bedeutung tagesperiodischer Blattbewegungen für die Präzision der Tageslängenmessung, Planta 86:209–217.Google Scholar
  46. Bünning, E., 1971, Symptoms, problems, and common features of circadian rhythms in plants and animals, in: Circadian Rhythmicity, Proc. Intl. Symp. Circ. Rhythmicity, Wageningen 1971, pp. 11–31, Centre for Agricultural Publishing and Documentation, Wageningen, 1972.Google Scholar
  47. Bünning, E., 1973, The Physiological Clock, 3rd English ed., Springer-Verlag, New York.Google Scholar
  48. Bünning, E., 1977, Die Physiologische Uhr, revised 3rd German ed., Springer-Verlag, Berlin.Google Scholar
  49. Bünning, E., and Engelmann, W., 1960, Endogen-tagesperiodische Schwankungen der photoperiodischen Hellrot-Empfindlichkeit bei Kalanchoe blossfeldiana, Naturwiss. 47:332.Google Scholar
  50. Bünning, E., and Joerrens, G., 1960, Tagesperiodische antagonistische Schwankungen der Blauviolett- und Gelbrot-Empfindlichkeit als Grundlage der photoperiodischen Diapause Induktion bei Pieris brassicae, Z. Naturf. 15B:205–213.Google Scholar
  51. Bünning, E., and Joerrens, G., 1963, Rot und Infrarot Wirkungen auf die photoperiodische Diapause Induktion bei Pieris brassicae,Z. Naturf. 18B:324–327.Google Scholar
  52. Bünning, E., and Lörcher, L., 1957, Regulierung und Auslösung endogen-tagesperiodischer Blattbewegungen durch verschiedene Lichtqualitäten, Naturwiss. 44:472.Google Scholar
  53. Bünning, E., and Moser, L, 1966a, Response curves of the circadian rhythm in Phaseolus, Planta 69:101–110.Google Scholar
  54. Bünning, E., and Moser, I., 1966b, Unterschiedliche photoperiodische Empfindlichkeit der beiden Blattseiten von Kalanchoe blossfeldiana, Planta 69:296–298.Google Scholar
  55. Bünning, E., and Moser, I., 1969, Interference of moonlight with the photoperiodic measurement of time by plants, and their adaptive reaction, Proc. Natl. Acad. Sci. USA 62:1018–1022.Google Scholar
  56. Bünning, E., and Moser, I., 1972, Influence of valinomycin on circadian leaf movements of Phaseolus, Proc. Natl. Acad. Sci. USA 69:2732–2733.Google Scholar
  57. Bünning, E., and Moser, I., 1973, Light-induced phase shifts of circadian leaf movements of Phaseolus: comparison with the effects of potassium and of ethyl alcohol, Proc. Natl. Acad. Sci. USA 70:3387–3389.Google Scholar
  58. Bünsow, R., 1953, Endogene Tagesrhythmik und Photoperiodismus bei Kalanchoe bloss-feldiana, Planta 42:220–253.Google Scholar
  59. Bürcky, K., and Kauss, H., 1974, Veränderung im Gehalt an ATP und ADP in Wurzelspitzen der Mungobohne nach Hellrotbelichtung. Z. Pflanzenphysiol. 73:184–186.Google Scholar
  60. Cardinali, D. P., Larin, F., and Wurtman, R. J., 1972, Control of the rat pineal gland by light spectra, Proc. Nat. Acad. Sci. USA 69:2003–2005.Google Scholar
  61. Chandrashekaran, M. K., and Engelmann, W., 1973, Early and late subjective night phases of the Drosophila pseudoobscura circadian rhythm require different energies of blue light for phase shifting, Z. Naturf. 28C:750–753.Google Scholar
  62. Chandrashekaran, M. K., and Engelmann, W., 1976, Amplitude attenuation of the circadian rhythm in Drosophila with light pulses of varying irradiance and duration, Int. J. Chronobiol. 3:231–240.Google Scholar
  63. Chandrashekaran, M. K., and Loher, W., 1969a, The effect of light intensity on the circadian rhythms of ecolosion in Drosophila pseudoobscura, Z. vergl. Physiol. 62:337–347.Google Scholar
  64. Chandrashekaran, M. K., and Loher, W., 1969b, The relationship between the intensity of light pulses and the extent of phase shifts of the circadian rhythm in the eclosion rate of Drosophila pseudoobscura, J. Exptl. Zool. 172:147–152.Google Scholar
  65. Cumming, B. G., 1971, The role of circadian rhythmicity in photoperiodic induction in plants, in: Circadian Rhythmicity, Proceedings of the International Symposium on Circadian Rhythmicity, Wageningen 1971, pp. 33–85, Centre for Agricultural Publishing and Documentation, Wageningen, 1972.Google Scholar
  66. Cummings, F. W., 1975, A biochemical model of the circadian clock, J. Theoret. Biol. 55:455–470.Google Scholar
  67. Darwin, C., and Darwin, F., 1896, Power of Movement in Plants, D. Appleton and Company, New York.Google Scholar
  68. De Candolle, A. P., 1832, Physiologie végétale ou exposition des forces et fonctions vitales des végétaux, Vol. 2, Béchet, Paris.Google Scholar
  69. Demian, J. J., and Taylor, D. H., 1977, Photoreception and locomotor rhythm entrainment by the pineal body of the newt, Notophthalmus viridescens (Amphibia, Urodela, Salaman-dridae), J. Herpetol. 11:131–139.Google Scholar
  70. Denney, A., and Salisbury, F. B., 1970, Separate clocks for leaf movements and photoperiodic flowering in Xanthium strumarium L., Plant Physiol. 46(suppl.), 26.Google Scholar
  71. Dhainaut-Courtois, N., 1965, Sur la présence d’un organe photorécepteur dans le cerveau de Nereis pelagica L., Compt. Rend. Acad. Sci. Paris 261:1085–1088.Google Scholar
  72. Dodt, E., and Scherer, E., 1968, The electroretinogram of the third eye, in: Advances in Electrophysiological Pathology of the Visual System, 6th ISCERG Symposium, G. Thieme.Google Scholar
  73. Dumortier, B., 1972, Photoreception in the circadian rhythm of stridulatory activity in Ephippiger (Insects, Orthoptera). Likely existence of two photoreceptive systems, J. Comp. Physiol. 77:80–112.Google Scholar
  74. Ehret, C. F., 1959, Induction of phase shift in cellular rhythmicity by far ultraviolet and its restoration by visible radiant energy, in: Photoperiodism and Related Phenomena in Plants and Animals (R. B. Withrow, ed.), pp. 541–550, AAAS, Washington, D.C.Google Scholar
  75. Ehret, C. F., 1960, Action spectra and nucleic acid metabolism in circadian rhythms at the cellular level, Cold Spring Harbor Symp. Quant. Biol. 25:149–158.Google Scholar
  76. Ehret, C. F., Groh, K. R., and Meinert, J. C., 1978, Circadian dyschronism and chronotypic ecophilia as factors in aging and longevity, Adv. Exptl. Medicine andBiology 25, in press.Google Scholar
  77. Elliott, J. A., 1976, Circadian rhythms and photoperiodic time measurement in mammals, Fed. Proc. 35:2339–2346.Google Scholar
  78. Enderle, W., 1951, Tagesperiodische Wachstums- and Turgorschwankungen as Gewebekulturen, Planta 39:570–588.Google Scholar
  79. Engbretson, G. A., and Lent, C. M., 1976, Parietal eye of the lizard: neuronal photoresponses and feedback from the pineal gland, Proc. Natl. Acad. Sci. USA 73:654–657.Google Scholar
  80. Engelmann, W., 1966, Effect of light and dark pulses on the emergence rhythms of Drosophila pseudoobscura, Experientia 22:606–608.Google Scholar
  81. Engelmann, W., 1972, Lithium slows down the Kalanchoe clock, Z. Naturf. 27B:477.Google Scholar
  82. Engelmann, W., and Honegger, H. W., 1966, Tagesperiodische Schlüpfrhythmik einer augenlosen Drosophila melanogaster-Mutante, Naturwiss. 53:588–589.Google Scholar
  83. Engelmann, W., and Mack, J., 1978, Different oscillators control the circadian rhythm of eclo-sion and activity in Drosophila, J. Comp. Physiol. 127:229–237.Google Scholar
  84. Erikson, L-O., 1972, Tagesperiodik geblendeter Bachsaiblinge, Naturwiss. 59:219–220.Google Scholar
  85. Eskin, A., 1971, Properties of the Aplysia visual system: in vitro entrainment of the circadian rhythm and centrifugal regulation of the eye, Z. vergl. Physiol. 74:353–371.Google Scholar
  86. Eskin, A., 1972, Phase shifting a circadian rhythm in the eye of Aplysia by high potassium pulses, J. Comp. Physiol. 80:353–376.Google Scholar
  87. Fischer, A., 1965, Über die Chromatophoren und den Farbwechsel bei dem Polychäten Platynereis dumerilii, Z. Zellforschung 65:290–312.Google Scholar
  88. Fleissner, G. 1977a, Differences in the physiological properties of the median and the lateral eyes and their possible meaning for the entrainment of the scorpion’s circadian rhythm, J. Interdise. Cycle Res. 8:15–26.Google Scholar
  89. Fleissner, G. 1977b, Entrainment of the scorpion’s circadian rhythm via the median eyes, J. Comp. Physiol. 118:93–99.Google Scholar
  90. Fleissner, G. 1977c, Scorpion lateral eyes: extremely sensitive receptors of Zeitgeber stimuli, J. Comp. Physiol. 118:101–108.Google Scholar
  91. Fleissner, G. 1977d, The absolute sensitivity of the median and lateral eyes of the scorpion, Androctonus australis L. (Buthidae, Scorpiones), J. Comp. Physiol. 118:109–120.Google Scholar
  92. Fortanier, E. J., 1954, Some observations on the influence of spectral regions of light on stem elongation, flower bud elongation, flower bud opening and leaf movement in Arachis hypogaea L., Meded. Landbouw. Wageningen, Ned. 54:103–114.Google Scholar
  93. Forward, R. B., and Davenport, D., 1970, The circadian rhythm of a behavioral photoresponse in the dinoflagellate Gyrodinium dorsum, Planta 92:259–266.Google Scholar
  94. Frank, K. D., and Zimmerman, W. F., 1969, Action spectra for phase shifts of a circadian rhythm in Drosophila, Science 163:688–689.Google Scholar
  95. Frisch, M. von, 1911, Beiträge zur Physiologie der Pigmentzellen in der Fischhaut, Pflügers Arch. Ges. Physiol. 138:319–387.Google Scholar
  96. Frosch, S., and Wagner, E., 1973a, Endogenous rhythmicity and energy transduction. II. Phytochrome action and the conditioning of rhythmicity of adenylate kinase, NAD- and NADP-linked glyceraldehyde-3-phosphate dehydrogenase in Chenopodium rubrum by temperature and light intensity cycles during germination, Can. J. Bot. 51:1521–1528.Google Scholar
  97. Frosch, S., and Wagner, E., 1973b, Endogenous rhythmicity and energy transduction. III. ime course of phytochrome action in adenylate kinase, NAD- and NADP-linked glyeraldehyde-3-phosphate dehydrogenase in Chenopodium rubrum, Can. J. Bot. 51:1529–1535.Google Scholar
  98. Galston, A. W., and Satter, R. L., 1976, Light, clocks and ion flux: an analysis of leaf movement, in: Light and Development (H. Smith, ed.), pp. 159–184, Butterworths, London.Google Scholar
  99. Ganong, W. F., Shepherd, M. D., Wall, J. R., van Brunt, E. E., and Clegg, M. T., 1963, Penetration of light into the brain of mammals, J. Endocrinol. 72:962–963.Google Scholar
  100. Garner, W. H., and Allard, H. A., 1920, Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants, J. Agric. Res. 18:553–606.Google Scholar
  101. Glasser, S. R., and Spelsberg, T. C., 1972, Mammalian RNA polymerases I and II: independent diurnal variations in activity, Biochem. Biophys. Res. Comm. 47:951–958.Google Scholar
  102. Gwinner, E., 1966, Entrainment of a circadian rhythm in birds by species-specific song cycles, Experientia 22:765–766.Google Scholar
  103. Hafeez, M. A., and Quay, W. B., 1970, The role of the pineal organ in the control of phototaxis and body coloration in rainbow trout (Salmo gairdneri, Richardson), Z. vergl. Physiol. 68:403–416.Google Scholar
  104. Halaban, R., 1969, Effects of light quality on the circadian rhythm of leaf movement of a short-day plant, Plant Physiol. 44:973–977.Google Scholar
  105. Halberg, F., 1959, Physiologic 24-hour periodicity; general and procedural considerations with reference to the adrenal cycle, Z. f. Vitamin-, Hormon- und Fermentforschung 10:225–296.Google Scholar
  106. Halberg, F., Halberg, E., Barnum, C. P., and Bittner, J. J., 1959, Physiologic 24-hour periodicity in human beings and mice, the lighting regimen and daily routine, in: Photoperiodism and Related Phenomena in Plants and Animals (R. B. Withrow, ed.), pp. 803–878, AAAS, Washington, D.C.Google Scholar
  107. Hamm, U., Chandrashekaran, M. K., and Engelmann, W., 1975, Temperature sensitive events between photoreceptor and circadian clock? Z. Naturf. 30C:240–244.Google Scholar
  108. Harder, R., 1949, Über die endogene Tagesrhythmik der Fermentaktivität, Guttation und Blütenbewegung bei Kalanchoe blossfeldiana und Phaseolus multiflorus, Nachr. Akad. Wiss. Göttigen math.-nat.-physikal. Kl., Biol.-Physiol.-Chem. Abt. 1941, 1–13.Google Scholar
  109. Harker, J. E., 1956, Factors controlling the diurnal rhythm of activity of Periplaneta americana, J. Exptl. Biol. 33:224–234.Google Scholar
  110. Harker, J. E., 1960, Endocrine and nervous factors in insect circadian rhythms. Cold Spring Harbor Symp. Quant. Biol. 25:279–287.Google Scholar
  111. Harker, J. E., 1964, The Physiology of Diurnal Rhythms, Cambridge University Press, Cambridge, Massachusetts.Google Scholar
  112. Harris, J. E., and Wolfe, U. K., 1955, A laboratory study of vertical migration, Proc. Roy. Soc. London 144:329–354.Google Scholar
  113. Harris, P. J. C., and Wilkins, M. B., 1978, Evidence of phytochrome involvement in the entrainment of the circadian rhythm of carbon dioxide metabolism in Bryophyllum, Planta 138:271–278.Google Scholar
  114. Hartman, H., Ashkenazi, I., and Epel, B. L., 1976, Circadian changes in membrane properties of human red blood cells in vitro, as measured by a membrane probe, FEBS L. 67:161–163.Google Scholar
  115. Hartmann, K. M. 1966, A general hypothesis to interpret “high energy phenomena” of photomorphogenesis on the basis of phytochrome, Photochem. Photobiol. 5:349–366.Google Scholar
  116. Hastings, J. W., 1960, Biochemical aspects of rhythms: phase shifting by chemicals, Cold Spring Harbor Symp. Quant. Biol. 25:131–140.Google Scholar
  117. Hastings, J. W., and Sweeney, B. M., 1958, A persistent diurnal rhythm of luminescence in Gonyaulax polyedra, Biol. Bull. 115:440–458.Google Scholar
  118. Hastings, J. W., and Sweeney, B. M., 1960, The action spectrum for shifting the phase of the rhythm of luminescence in Gonyaulax polyedra, J. Gen. Physiol. 43:697–706.Google Scholar
  119. Hastings, J. W., Astrachan, L., and Sweeney, B. M., 1960, A persistent daily rhythm in photosynthesis, J. Gen. Physiol. 45:69–76.Google Scholar
  120. Heide, O. M., 1977, Photoperiodism in higher plants: an interaction of phytochrome and cir-cadian rhythms, Physiol. Plant. 39:25–32.Google Scholar
  121. Highkin, H., and Hanson, J. B., 1954, Possible interactions between light-dark cycles and endogenous daily rhythms on the growth of tomato plants, Plant Physiol. 29:301–302.Google Scholar
  122. Hillman, W. S., 1956, Injury of tomato plants by continuous light and unfavorable photoperiodic cycles, Amer. J. Bot. 43:89–96.Google Scholar
  123. Hillman, W. S., 1970, Carbon dioxide output as an index of circadian timing in Lemna photoperiodism, Plant Physiol. 45:273–279.Google Scholar
  124. Hillman, W. S., 1971, Entrainment of Lemna CO2 output through phytochrome, Plant Physiol. 48:770–774.Google Scholar
  125. Hillman, W. S., 1972, Photoperiodic entrainment patterns in the CO2 output of Lemna perpusilla 6746 and of several other Lemnaceae, Plant Physiol. 49:907–911.Google Scholar
  126. Hillman, W. S., 1976a, Biological rhythms and physiological timing, Ann. Rev. Plant Physiol. 27:159–179.Google Scholar
  127. Hillman, W. S., 1976b, Light/timer interactions in photoperiodism and carbon dioxide output patterns: towards a real-time analysis of photoperiodism, in Light and Development (H. Smith, ed.), pp. 383–397, Butterworths, London.Google Scholar
  128. Hillman, W. S., and Koukkari, W. L., 1967, Phytochrome effects in the nyctinastic leaf movements of Albizzia julibrissin and some other legumes, Plant Physiol. 42:1413–1418.Google Scholar
  129. Hoffman, K., 1965, Overt circadian frequencies and circadian rule, in: Circadian Clocks (J. Aschoff, ed.) pp. 87–94, North-Holland Publishing Company, Amsterdam.Google Scholar
  130. Holdsworth, M., 1960, The spectral sensitivity of light-induced leaf movement, J. Exptl. Bot. 11:40–44.Google Scholar
  131. Hollwich, F., and Dieckhues, B., 1971, Circadian rhythm in the blind, J. Interdise. Cycle Res. 2:291–302.Google Scholar
  132. Jacklet, J. W., 1969, Circadian rhythm of optic nerve impulses recorded in darkness from isolated eye of Aplysia, Science 164:562–564.Google Scholar
  133. Jacklet, J. W., 1974, The effects of constant light and light pulses on the circadian rhythm in the eye of Aplysia, J. Comp. Physiol. 90:33–45.Google Scholar
  134. Jaffe, M. J., and Galston, A. W., 1967, Phytochrome control of rapid nyctinastic movements and membrane permeability in Albizzia julibrissin, Planta 77:135–141.Google Scholar
  135. Junker, G., and Mayer, W., 1974, Die Bedeutung der Epidermis für licht- und temperaturinduzierte Phasenverschiebungen circadianer Laubblattbewegungen, Planta 121:27–37.Google Scholar
  136. Kalmus, H., 1938a, Über einen latenten physiologischen Farbwechsel beim Flusskrebs Potamobius astacus, sowie seine hormonale Beeinflussung, Z. vergl. Physiol. 25:784–797.Google Scholar
  137. Kalmus, H., 1938b, Das Aktogram des Flusskrebses und seine Beeinflussung durch Organextrakte, Z. vergl. Physiol. 25:798–802.Google Scholar
  138. Karvé, A., Engelmann, W., and Schoser, G., 1961, Initiation of rhythmical petal movements in Kalanchoe blossfeldiana by transfer from continuous darkness to continuous light or vice versa, Planta 56:700–711.Google Scholar
  139. Khudairi, A. K., and Hemberg, T., 1974, Serine involvement in the flowering of Lemna during photoperiodic induction, J. Exptl. Bot. 25:740–744.Google Scholar
  140. Kirschner, R. L., White, J. M., and Pike, C. S., 1975, Control of bean bud ATP levels by regulatory molecules and phytochrome, Physiol. Plant. 34:373–377.Google Scholar
  141. Kiyosawa, K., and Tanaka, H., 1976, Change in potassium distribution in a Phaseolus pulvinus during circadian movement of the leaf, Plant and Cell Physiol. 17:289–298.Google Scholar
  142. Kleinhoonte, A., 1929, Über die durch das Licht regulierten autonomen Bewegungen der Canavalia-Bïàtter, Arch. Néerl. Sc. Ex. et Nat. III B,5:1–110.Google Scholar
  143. Kleinhoonte, A., 1932, Untersuchungen über die autonomen Bewegungen der Primärblätter von Canavalia ensiformis, Jahrb. wiss. Bot. 75:679–725.Google Scholar
  144. Klemm, E., 1975, Photorezeptor für Blaulicht bei Drosophila pseudoobscura, Master’s Thesis, University Tübingen.Google Scholar
  145. Klemm, E., and Ninnemann, H., 1976, Detailed action spectrum for the delay shift in pupae emergence of Drosophila pseudoobscura, Photochem. Photobiol. 24:369–371.Google Scholar
  146. Klemm, E., and Ninnemann, H., 1978, Correlation between absorbance changes and a physiological response induced by blue light in Neurospora, Photochem. Photobiol., 28:227–230.Google Scholar
  147. Klemm, E., and Ninnemann, H., 1979, Nitrate reductase—a key enzyme in blue light-promoted conidiation and absorbance change of Neurospora, Photochem. Photobiol. 29:629–632.Google Scholar
  148. Knoerchen, R., and Hildebrandt, G., 1976, Tagesrhythmische Schwankungen der visuellen Lichtempfindlichkeit beim Menschen, J. Interdise. Cycle Res. 7:51–69.Google Scholar
  149. Köhler, W., and Fleissner, G., 1978, Internal desynchronisation of bilaterally organized circadian oscillators in the visual system of insects, Nature 274:708–710.Google Scholar
  150. Köbler, F., 1969, Wechselseitige Synchronisation der Blattbewegungen innerhalb einer Pflanze, Z. Pflanzenphysiol. 61:310–313.Google Scholar
  151. Kupfermann, I., 1968, A circadian locomotor rhythm in Aplysia californica, Physiol. Behav. 3:179–181.Google Scholar
  152. Lauber, J. K., Boyd, J. E., and Axelrod, J., 1968, Enzymatic synthesis of melatonin in avian pineal body: extraretinal response to light, Science 161:489–490.Google Scholar
  153. Lickey, M. E., 1969, Seasonal modulation and non-24-hour entrainment of a circadian rhythm in a single neuron, J. Comp. Physiol. Psychol. 68:9–17.Google Scholar
  154. Lickey, M. E., and Zack, S., 1973, Extraocular photoreceptors can entrain the circadian rhythm in the abdominal ganglion of Aplysia, J. Comp. Physiol. 84:361–366.Google Scholar
  155. Lickey, M. E., Block, G. D., Hudson, D. J., and Smith, J. T., 1976, Circadian oscillators and photoreceptors in the gastropod Aplysia, Photochem. Photobiol. 23:253–273.Google Scholar
  156. Lickey, M. E., Wozniak, J. A., Block, G. D., and Hudson, D. J., 1977, The consequences of eye removal for the circadian rhythm of behavioral activity in Aplysia, J. Comp. Physiol. 118:121–143.Google Scholar
  157. Loner, W., 1972, Circadian control of stridulation in the cricket Teleogryllus commodus Walker, J. Comp. Physiol. 79:173–190.Google Scholar
  158. Loher, W., and Chandrashekaran, M. K., 1970, Circadian rhythmicity in the oviposition of the grasshopper Chorthippus curtipennis, J. Insect Physiol. 16:1677–1688.Google Scholar
  159. Lohmann, M., and Enright, J. T., 1967, The influence of mechanical noise on the activity rhythms of finches, Comp. Biochem. Physiol. 22:289–296.Google Scholar
  160. Lörcher, L., 1958, Die Wirkung verschiedener Lichtqualitäten auf die endogene Tagesrhythmik von Phaseolus, Z. Botanik 46:209–241.Google Scholar
  161. Lukowiak, C. M., and Jacklet, J. W., 1974, In vitro tests of a presumed circadian rhythm in a molluscan neuron, The Physiologist 17:278.Google Scholar
  162. Lukowiak, K., and Jacklet, J. W., 1972, Habituation: a peripheral and central nervous system process in Aplysia, Fed. Proc. 31:405.Google Scholar
  163. Machado, C. R. S., Wragg, L. E., and Machado, A. B. M., 1969, Circadian rhythm of serotonin in the pineal body of immunosympathectomized immature rats, Science 164:442–443.Google Scholar
  164. Mairan, M. de (= d’Ortons de Mairan, J. J.), 1729, Observation botanique, Histoire de l’Académie Royale des Sciences, Paris.Google Scholar
  165. Martens, C. L., and Sargent, M. L., 1974, Circadian rhythms of nucleic acid metabolism in Neurospora crassa, J. Bacteriol. 117:1210–1215.Google Scholar
  166. Mayer, W., 1973, Weitere Hinweise für die Bedeutung der Epidermis als Ort der Lichtperzep-tion bei circadianen Laubblattbewegungen, Z. Naturf. 28C:776.Google Scholar
  167. Mayer, W., Moser, I., and Bünning, E., 1973, Die Epidermis als Ort der Lichtperzeption für circadiane Laubblattbewegungen und photoperiodische Induktionen, Z. Pflanzenphysiol. 70:66–73.Google Scholar
  168. McGuire, R. A., Rand, W. M., and Wurtman, R. J„ 1973, Entrainment of the body temperature rhythm in rats: effect of color and intensity of environmental light, Science 181:956–957.Google Scholar
  169. McMillan, J. P., Elliott, J. A., and Menaker, M., 1975a, On the role of eyes and brain photoreceptors in the sparrow: Aschoffs rule, J. Comp. Physiol. 102:257–262.Google Scholar
  170. McMillan, J. P., Elliott, J. A., and Menaker, M., 1975b, On the role of eyes and brain photoreceptors in the sparrow: Arrhythmicity in constant light, J. Comp. Physiol. 102:263–268.Google Scholar
  171. McMillan, J. P., Keatts, H. C., and Menaker, M., 1975c, On the role of eyes and brain photoreceptors in the sparrow: entrainment to light cycles, J. Comp. Physiol. 102:251–256.Google Scholar
  172. McMurray, L., and Hastings, J. W., 1972, No desynchronization among four circadian rhythms in the unicellular alga, Gonyaulax polyedra, Science 175:1137–1139.Google Scholar
  173. Melchers, G., 1956, Die Beteiligung der endonomen Tagesrhythmik am Zustandekommen der photoperiodischen Reaktion der Kurztagpflanze Kalanchoe blossfeldiana, Z. Naturf. 11b:544–548.Google Scholar
  174. Menaker, M., 1968, Extraretinal light perception in the sparrow, I. Entrainment of the biological clock, Proc. Natl. Acad. Sci. USA 59:414–421.Google Scholar
  175. Menaker, M., and Eskin, A., 1966, Entrainment of circadian rhythms by sound in Passer domesticus, Science 154:1579–1581.Google Scholar
  176. Menaker, M., and Eskin, A., 1967, Circadian clock in photoperiodic time measurement: A test of the Bünning hypothesis, Science 157:1182–1185.Google Scholar
  177. Menaker, M., and Underwood, H., 1976, Extraretinal photoreception in birds, Photochem. Photobiol. 23:299–306.Google Scholar
  178. Menaker, M., and Zimmerman, N., 1976, The role of the pineal in the circadian system of birds, Amer. Zool. 16:45–55.Google Scholar
  179. Minis, D. H., and Pittendrigh, C. S., 1968, Circadian oscillation controlling hatching: its ontogeny during embryogenesis of a moth, Science 159:534–536.Google Scholar
  180. Moore, R.Y., and Eichler, V. B., 1972, Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat, Brain Res. 42:201–206.Google Scholar
  181. Moser, I., 1962, Phasenverschiebungen der endogenen Tagesrhythmik bei Phaseolus durch Temperatur- und Lichtintensitätsänderungen, Planta 58:199–219.Google Scholar
  182. Munoz, V., and Butler, W. L., 1975, Photoreceptor pigment for blue light in Neurospora crassa, Plant Physiol. 55:421–426.Google Scholar
  183. Munoz, V., Brody, S., and Butler, W. L., 1974, Photoreceptor pigment for blue light responses in Neurospora crassa, Biochem. Biophys. Res. Comm. 58:322–327.Google Scholar
  184. Nagel, W. A., 1894, Beobachtungen über den Lichtsinn augenloser Muscheln, Biol. Zentral-blatt 14:385–390.Google Scholar
  185. Neuscheler, W., 1967, Bewegung und Orientierung bei Micrasterias denticulata Bréb. im Licht, Z. Pflanzenphysiol. 57:151–172.Google Scholar
  186. Neville, A. C., 1967, A dermal light sense influencing skeletal structure in locusts, J. Insect Physiol. 13:933–939.Google Scholar
  187. Newby, N. A., 1973, Habituation to light and spontaneous activity in the isolated siphon of Aplysia. Pharmacological observations. Comp. Gen. Pharmacol. 4:91–100.Google Scholar
  188. Ninnemann, H., and Klemm, E., 1976, Blue light induced absorption changes in plants and animals, Plant Physiol. 58:21.Google Scholar
  189. Ninnemann, H., Strasser, R. J., and Butler, W. L. 1977, The superoxide anion as electron donor to the mitochondrial electron transport chain, Photochem. Photobiol. 26:41–47.Google Scholar
  190. Nishiitsutsuji-Uwo, J., and Pittendrigh, C. S., 1968, Central nervous system control of circadian rhythm ici ty in the cockroach. II. The pathway of light signals that entrain the rhythm. Z. vergl. Physiol. 58:1–13.Google Scholar
  191. Njus, D., 1976, Experimental approaches to membrane models, in: Dahlem Workshop on The Molecular Basis of Orcadian Rhythms (J. W. Hastings and H-G. Schweiger, eds.), pp. 283–294, Dahlem Konferenzen, Berlin.Google Scholar
  192. Njus, D., Sulzman, F. M., and Hastings, J. W., 1974, Membrane model for the circadian clock, Nature 248:116–120.Google Scholar
  193. Nowesielski, J. W., and Patton, R. L., 1963, Studies on the circadian rhythm of the house cricket, Gryllus domesticus L., J. Insect Physiol. 9:401–410.Google Scholar
  194. Nyce, J., and Binkley, S., 1977, Extraretinal photoreception in chickens: entrainment of the circadian locomotor activity rhythm, Photochem. Photobiol. 25:529–531.Google Scholar
  195. Oschke, A., and Vaupel-von Harnack, M., 1964, Die elektronenmikroskopische Feinstruktur des Stirnorgans (Epiphysenendblase) der Anuren, Progr. Brain Res. 5:209–222.Google Scholar
  196. Oschke, A., and Vaupel-von Harnack, M., 1965, Elektronenmikroskopische Untersuchungen an den Nervenbahnen des Pinealkomplexes von Rana esculenta L., Z. Zellforschung 68:389–426.Google Scholar
  197. Page, T. L., and Larimer, J. L., 1972, Entrainment of the circadian locomotor activity rhythm in crayfish. The role of the eyes and caudal photoreceptor, J. Comp. Physiol. 78:107–120.Google Scholar
  198. Page, T. L., and Larimer, J. L., 1975, Neural control of circadian rhythmicity in the crayfish. I. The locomotor activity rhythm, J. Comp. Physiol. 97:59–80.Google Scholar
  199. Page, T. L., and Larimer, J. L., 1976, Extraretinal photoreception in entrainment of crustacean circadian rhythms, Photochem. Photobiol. 23:245–251.Google Scholar
  200. Page, T. L., Caldarola, P. C., and Pittendrigh, C. S., 1977, Mutual entrainment of bilaterally distributed circadian pacemakers, Proc. Natl. Acad. Sci. USA 74:1277–1281.Google Scholar
  201. Parker, G. H., 1903, The skin and eyes as receptive organs in the reaction of frogs to light, Amer. J. Physiol. 10:28–36.Google Scholar
  202. Pfeffer, W., 1875, Die periodischen Bewegungen der Blattorgane, Engelmann, Leipzig.Google Scholar
  203. Pfeffer, W., 1909, Untersuchungen über die Entstehung der Schlafbewegungen der Blattorgane, Abh. Sachs. Akad. Wiss. math.-physik. Kl. 30:257–472.Google Scholar
  204. Pfeffer, W., 1915, Beiträge zur Kenntnis der Entstehung der Schlafbewegungen, Abh. Sachs. Akad. Wiss. math.-physik. Kl. 34:1–154.Google Scholar
  205. Pittendrigh, C. S., 1954, On temperature independence in clock-system controlling emergence time in Drosophila, Proc. Natl. Acad. Sci. USA 40:1018–1029.Google Scholar
  206. Pittendrigh, C. S., 1960, Circadian rhythms and the circadian organization of living systems, Cold Spring Harbor Symp. Quant. Biol. 25:159–182.Google Scholar
  207. Pittendrigh, C. S., 1966, The circadian oscillation in Drosophila pupae: a model for the photoperiodic clock, Z. Pflanzenphysiol. 54:275–307.Google Scholar
  208. Pittendrigh, C. S., 1974, in: The Neurosciences, Third Study Program (F. O. Schmitt and F. G. Worden, eds.), pp. 437–458, MIT Press, Cambridge.Google Scholar
  209. Pittendrigh, C. S., and Minis, D. H., 1972, Circadian systems: longevity as a function of circadian resonance in Drosophila melanogaster, Proc. Natl. Acad. Sci. USA 69:1537–1539.Google Scholar
  210. Pittendrigh, C. S., Eichhorn, J. H., Minis, D. H., and Bruce, V. G., 1970, Circadian system. VI. Photoperiodic time measurement in Pectinophora gossypiella, Proc. Natl. Acad. Sci. USA 66:758–764.Google Scholar
  211. Pohl, R., 1948, Tages rhythmus im phototaktischen Verhalten der Euglena gracilis, Z. Naturf. 36:367–374.Google Scholar
  212. Racusen, R., and Satter, R. L., 1975, Rhythmic and phytochrome-regulated changes in transmembrane potential in Samanea pulvini, Nature 255:408–410.Google Scholar
  213. Ralph, C. L., Binkley, S., MacBride, S. E., and Klein, D. C., 1975, Regulation of pineal rhythms in chickens: effects of blinding, constant light, constant dark, and superior cervical ganglionectomy, Endocrinol. 97:1373–1378.Google Scholar
  214. Reiter, R. J., 1969, Pineal function in long-term blinded male and female golden hamsters, Gen. Comp. Endocrinol. 12:460–468.Google Scholar
  215. Reiter, R. J., 1973, Comparative effects of continual lighting and pinealectomy on the eyes, the Harderian glands, and reproduction in pigmented and albino rats, Comp. Biochem. Physiol. 44A:503–509.Google Scholar
  216. Reiter, R. J., 1975, Endocrine rhythms associated with pineal gland function, in: Biological Rhythms and Endocrine Function (L. W. Hedlung, J. M. Franz, and A. D. Kenny, eds.), pp. 43–73, Plenum Press, New York.Google Scholar
  217. Roberts, S. K., 1965, Photoreception and entrainment of cockroach activity rhythms, Science 148:958–959.Google Scholar
  218. Roberts, S. K., 1974, Circadian rhythms in cockroaches. Effects of optic lobe lesions, J. Comp. Physiol. 88:21–30.Google Scholar
  219. Rohles, F. H., 1967, Circadian rhythms in the feeding behavior of laboratory monkeys, Lab. Anim. 1:141–146.Google Scholar
  220. Rohles, F. H., and Osbaldiston, G., 1969, Social entrainment of biorhythms in rhesus monkeys, in: Circadian Rhythms in Nonhuman Primates (F. H. Rohles, ed.), Bibliotheca Primatologica No. 9, pp. 39–51, S. Karger, Basel/New York.Google Scholar
  221. Röseler, I., 1970, Die Rhythmik der Chromatophoren des Polychäten Platynereis dumerilii, Z. vergl. Physiol. 70:144–174.Google Scholar
  222. Sachs, J., 1857, Über das Bewegungsorgan und die periodischen Bewegungen der Blätter von Phaseolus and Oxalis, Bot. Zeitung 15:809–815.Google Scholar
  223. Sachs, J., 1863, Die vorübergehenden Starre-Zustände periodisch beweglicher und reizbarer Pflanzenorgane, Flora 30:465–472.Google Scholar
  224. Salisbury, F. B., 1965, Time measurement and the light period in flowering, Planta 66:1–26.Google Scholar
  225. Sargent, M. L., and Briggs, W. R., 1967, The effects of light on a circadian rhythm of conidiation in Neurospora, Plant Physiol. 42:1504–1510.Google Scholar
  226. Sargent, M. L., Briggs, W. R., and Woodward, D. O., 1966, The circadian nature of a rhythm expressed by an invertaseless strain of Neurospora crassa, Plant Physiol. 41:1343–1349.Google Scholar
  227. Satter, R. L., and Galston, A. W., 1971a, Potassium flux: a common feature of Albizzia leaflet movement controlled by phytochrome and by an endogenous rhythm, Science 194: 518–520.Google Scholar
  228. Satter, R. L., and Galston, A. W., 1971b, Phytochrome controlled nyctinasty in Albizzia julibrissin, Plant Physiol. 48:740–746.Google Scholar
  229. Satter, R. L., Geballe, G. T., and Galston, A. W., 1974a, Potassium flux and leaf movement in Samanea soman. II. Phytochrome controlled movement, J. Gen. Physiol. 64:431–442.Google Scholar
  230. Satter, R. L., Geballe, G. T., Applewhite, P. B., and Galston, A. W., 1974b, Potassium flux and leaf movement in Samanea saman. I. Rhythmic movement, J. Gen. Physiol. 64:413–430.Google Scholar
  231. Schrempf, M., 1975, Eigenschaften und Lokalisation des Photorezeptors für phasenverschiebendes Störlicht bei der Blütenblattbewegung von Kalanchoe blossfeldiana (v. Poelln.), Ph.D. Dissertation, Unversity Tübingen.Google Scholar
  232. Schwabe, W. W., 1968, Studies on the role of the leaf epiderm in photoperiodic perception in Kalanchoe blossfeldiana, Exptl. Bot. 19:108–113.Google Scholar
  233. Simon, E., Satter, R. L„ and Galston, A. W., 1976, Orcadian rhythmicity in excised Samanea pulvini, Plant Physiol. 58:421–425.Google Scholar
  234. Snyder, S. H., Zweig, M., Axelrod, J., and Fischer, J. E., 1965, Control of the circadian rhythm in serotonin content of the rat pineal gland, Proc. Natl. Acad. Sci. USA. 53:301–305.Google Scholar
  235. Stephan, F. K., and Zucker, I., 1972a, Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions, Proc. Natl. Acad. Sci. USA 69:1583–1586.Google Scholar
  236. Stephan, F. K., and Zucker, I., 1972b, Rat drinking rhythms: central visual pathways and endocrine factors mediating responsiveness to environmental illumination, Physiol. Behav. 8:315–326.Google Scholar
  237. Stetson, M. H., and Watson-Whitmyre, M., 1976, Nucleus suprachiasmaticus: the biological clock in the hamster?, Science 191:197–199.Google Scholar
  238. Strumwasser, F., 1965, The demonstration and manipulation of a circadian rhythm in a single neuron, in: Circadian Clocks (J. Aschoff, ed.), pp. 442–462, North-Holland, Amsterdam.Google Scholar
  239. Strumwasser, F., 1973, Neural and humoral factors in the temporal organization of behavior, The Physiologist 16:9–42.Google Scholar
  240. Strumwasser, F., Lu, C., and Giliam, J. J., 1966, Quantitative studies of the circadian locomotor system in Aplysia, Calif. Inst. Techn. Biol. Ann. Rep., 153.Google Scholar
  241. Strumwasser, F., Schlechte, F. R., and Bower, S., 1972, Distributed circadian oscillators in the nervous system of Aplysia, Fed. Proc. 31:405.Google Scholar
  242. Sweeney, B. M., 1963, Resetting the biological clock in Gonyaulax with ultraviolet light, Plant Physiol. 38:704–708.Google Scholar
  243. Sweeney, B. M., 1974a, The potassium content of Gonyaulax polyedra and phase changes in the circadian rhythm of stimulated bioluminescence by short exposures to ethanol and valinomycin, Plant Physiol. 53:337–342.Google Scholar
  244. Sweeney, B. M., 1974b, A physiological model for circadian rhythms derived from the Acetabularia rhythm paradoxes, Int. J. Chronobiol. 2:25–33.Google Scholar
  245. Sweeney, B. M., and Hastings, J. W., 1958, Rhythmic cell division in populations of Gonyaulax polyedra, J. Protozool. 5:217–224.Google Scholar
  246. Sweeney, B. M., Haxo, F., and Hastings, J. W., 1960, Action spectra for two effects of light on luminescence in Gonyaulax polyedra, J. Gen. Physiol. 43:285–299.Google Scholar
  247. Sweet, H. C., and Hillman, W. S., 1969, Phytochrome control of nyctinasty in Samanea as modified by oxygen, submergence, and chemicals, Physiol. Plant. 22:776–786.Google Scholar
  248. Todt, D., 1962, Untersuchungen über Öffnung und Anthocyangehaltsveränderungen der Blüten von Cichorium intybus im Licht-Dunkel-Wechsel und unter konstanten Bedingungen, Z. Botan. 50:1–21.Google Scholar
  249. Truman, J. W., 1974, Physiology of insect rhythms, IV. Role of the brain in the regulation of the flight rhythm of the giant silkmoth, J. Comp. Physiol. 95:281–296.Google Scholar
  250. Truman, J. W., 1976, Extraretinal photoreeeption in insects, Photochem. Photobiol. 23:215–225.Google Scholar
  251. Truman, J. W., and Riddiford, L. M., 1970, Neuroendocrine control of ecdysis in silkmoths, Science 167:1624–1626.Google Scholar
  252. Tweedy, D. G., and Stephen, W. P., 1970, Light refractive emergence rhythm in the leaf cutter bee Megachile rotundata, Experientia 26:377–379.Google Scholar
  253. Underwood, H., 1973, Retinal and extraretinal photoreceptors mediate entrainment of the circadian locomotor rhythm in lizards, J. Comp. Physiol. 83:187–222.Google Scholar
  254. Underwood, H., 1977, Orcadian organization in lizards: the role of the pineal organ, Science 195:587–589.Google Scholar
  255. Underwood, H., and Menaker, M., 1976, Extraretinal photoreception in lizards, Photochem. Photobiol. 23:227–243.Google Scholar
  256. van Veen, T., Hartwig, H. G., and Müller, K., 1976, Light-dependent motor activity and pho-tonegative behavior in the eel (Anguilla anguilla L.), J. Comp. Physiol. 111:209–219.Google Scholar
  257. Wagner, E., 1976, Kinetics in metabolic control of time measurement in photoperiodism, J. Interdise. Cycle Res. 7:313–332.Google Scholar
  258. Wagner, E., and Cumming, B. G., 1970, Betacyanin accumulation, chlorophyll content, and flower initiation in Chenopodium rubrum as related to endogenous rhythmicity and photochrome action, Can. J. Bot. 48:1–18.Google Scholar
  259. Wagner, E., and Frosch, S., 1974, Endogenous rhythmicity and energy transduction. VI. Rhythmicity in reduced and oxidized pyridine nucleotide levels in seedlings of Chenopodium rubrum, J. Interdise. Cycle Res. 5:231–239.Google Scholar
  260. Wagner, E., Frosch, S., and Deitzer, G. F., 1974a, Metabolic control of photoperiodic time measurement. J. Interdise. Cycle Res. 5:240–246.Google Scholar
  261. Wagner, E., Frosch, S., and Deitzer, G. F., 1974b, Membrane oscillator hypothesis of photoperiodic control, in: Proceedings of the Annual European Symposium on Plant Photomor-phogenesis (J. A. de Greef, ed.), pp. 15–19, Campus State University Center.Google Scholar
  262. Wagner, E., Frosch, S., and Kempf, O., 1974c, Endogenous rhythmicity and energy transduction. VII. Phytochrome-modulated rhythms in pyridine nucleotide levels in seedlings of Chenopodium rubrum, Plant Sci. Lett. 3:43–48.Google Scholar
  263. Wagner, E., Ströbele, L., and Frosch, S., 1974d, Endogenous rhythmicity and energy transduction. V. Rhythmicity in adenine nucleotides and energy charge in seedlings of Chenopodium rubrum L., J. Interdise. Cycle Res. 5:77–88.Google Scholar
  264. Wagner, E., Tetzner, J., Haertle, U., and Deitzer, G. F., 1974e, Endogenous rhythmicity and energy transduction. VIII. Kinetics in enzyme activity, redox state, and energy charge as related to photomorphogenesis in seedlings of Chenopodium rubrum L., Ber. dt. bot. Ges. 87:291–302.Google Scholar
  265. Waser, P. M., 1968, The spectral sensitivity of the eye of Aplysia californica, Comp. Biochem. Physiol. 27:339–347.Google Scholar
  266. Webb, H. M., Bennett, M. F., and Brown, F. A., 1954, A persistent diurnal rhythm of chromatophoric response in eyestalkless Uca pugilator, Biol. Bull. 106:371–377.Google Scholar
  267. Wetterberg, L., Geller, E., and Yuwiler, A., 1970a, Harderian gland: an extraretinal photoreceptor influencing the pineal gland in neonatal rats? Science 167:884–885.Google Scholar
  268. Wetterberg, L., Yuwiler, A., Ulrich, R., Geller, E., and Wallace, R., 1970b, Harderian gland: influence on pineal hydroxyindole-O-methyl transferase activity in neonatal rats, Science 170:194–196.Google Scholar
  269. Wever, R., 1970, Zur Zeitgeber-Stärke eines Licht-Dunkel-Wechsels für die circadiane Periodik des Menschen, Pfügefs Arch. 321:133–142.Google Scholar
  270. White, J. M., and Pike, C. S., 1974, Rapid phytochrome-mediated changes in adenosine-5-triphosphate content of etiolated bean buds, Plant Physiol. 53:76–79.Google Scholar
  271. Wilbur, K. M., Wolfson, N., Kenaston, C. B., Ottolenghi, A., Gaulden, M. E., and Bernheim, F., 1957, Inhibition of cell division by ultraviolet-irradiated unsaturated fatty acid, Exptl. Cell Res. 13:503–509.Google Scholar
  272. Wilkins, M. B., 1960, An endogenous rhythm in the rate of CO2output of Bryophyllum. II. The effects of light and darkness of the phase and period of the rhythm, J. Exptl. Bot. 11:269–288.Google Scholar
  273. Wilkins, M. B., 1973, An endogenous circadian rhythm in the rate of carbon dioxide output of Bryophyllum. VI. Action spectrum for the induction of phase shifts by visible radiation, J. Exptl. Bot. 24:488–496.Google Scholar
  274. Wilkins, MB., and Harris, P. J. O, 1976, Phytochrome and phase setting of endogenous rhythms, in: Light and Plant Development (H. Smith, ed.), pp. 399–417, Butterworths, London.Google Scholar
  275. Wilkins, M. B., and Holowinsky, A. W., 1965, The occurrence of an endogenous circadian rhythm in a plant tissue culture, Plant Physiol. 40:907–909.Google Scholar
  276. Williams, C. M., and Adkisson, P. L., 1964, Physiology of insect diapause. XIV. An endocrine mechanism for the photoperiodic control of pupal diapause in the oak silkworm Antheraea pernyi, Biol. Bull. 127:511–525.Google Scholar
  277. Winfree, A. T., 1970, Integrated view of resetting a circadian clock, J. Theoret. Biol. 28:327–374.Google Scholar
  278. Winfree, A. T., 1972, Slow dark adaptation in Drosophila’s circadian clock, J. Comp. Physiol. 77:418–434.Google Scholar
  279. Winfree, A. T., 1974, Suppressing Drosophila circadian rhythm with dim light, Science 183:970–972.Google Scholar
  280. Winget, C. M., Card, D. H., and Hetherington, N. W., 1968, Circadian oscillations of deep-body temperature and heart rate in a primate (Cebus alhafrons), Aerospace Med. 39:350–353.Google Scholar
  281. Winget, C. M., Rahlmann, D. F., and Pace, N., 1969, Phase relationships between circadian rhythms and photoperiodism in the monkey, in: Circadian Rhythms in Nonhuman Primates (F. H. Rohles, ed.), Bibliotheca Primatologica No. 9, pp. 64–74. S. Karger, Basel/New York.Google Scholar
  282. Wormhoudt, A. van, and Malcoste, R., 1976, Influence d’éclairements brefs à différentes longeurs d’onde, sur les variations circadiennes des activités enzymatiques digestives chez Palaemon serratus (Crustacea, Natantia), J. Interdise. Cycle Res. 7:101–112.Google Scholar
  283. Wurtman, R. J., Axelrod, J., and Kelly, D. E., 1968, in: The Pineal, pp. 107–144, Academic Press, New York.Google Scholar
  284. Yunghans, H., and Jaffe, M. J., 1972, Rapid respiratory changes due to red light or acetylcholine during the early events of phytochrome-mediated photomorphogenesis, Plant Physiol. 49:1–7.Google Scholar
  285. Zimmerman, N., and Menaker, M., 1975, Neural connections of sparrow pineal: role in circadian control of activity, Science 190:477–479.Google Scholar
  286. Zimmerman, W. F., and Goldsmith, T. H., 1971, Photosensitivity of the circadian rhythm and of visual receptors in carotenoid-depleted Drosophila, Science 171:1167–1169.Google Scholar
  287. Zimmerman, W. F., and Ives, D., 1971, Some photophysiological aspects of circadian rhythmicity in Drosophila, in: Biochronometry (M. Menaker, ed.), pp. 381–391, National Academy of Science, Washington, D.C.Google Scholar
  288. Zinn, J. G., 1759, Von dem Schlafe der Pflanzen, Hamburger Mag. 22:40–50.Google Scholar
  289. Zweig, M., Snyder, S. H., and Axelrod, J., 1966, Evidence for a nonretinal pathway of light to the pineal gland of newborn rats, Proc. Natl. Acad. Sci. USA 56:515–520.Google Scholar
  290. Zwicky, K. T. 1970, Behavioral aspects of the extraocular light sense of Urodacus, a scorpion, Experientia 26:747–748.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Helga Ninnemann
    • 1
  1. 1.Institute for Chemical Plant PhysiologyUniversity of Tuebingen74 TuebingenWest Germany

Personalised recommendations