Phytochrome: Function and Properties

  • Lee H. Pratt

Abstract

Phytochrome is a chromoprotein that serves as the photoreceptor for a wide range of photomorphogenic responses in plants. This chromoprotein exists in two photointerconvertible forms at physiological temperatures. One form absorbs maximally near 665 nm (Pr) and is considered inactive, while the other absorbs maximally near 730 nm (Pfr) and is morphogenically active. Since the discovery of this pigment some 25 years ago (Borthwick, 1972), two different, although not necessarily mutually exclusive, approaches to an understanding of its mode of action have been taken. One approach has been to investigate phytochrome-mediated responses in attempts to deduce the nature of the primary events that lead to these responses. A second approach has been to investigate the biophysical and biochemical properties of the pigment so that a direct path to understanding its molecular mechanism of action might become available.

Keywords

Sucrose Starch Electrophoresis Germinate Carbon Monoxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acton, G. J., Drumm, H., and Mohr, H., 1974, Control of synthesis de novo of ascorbate oxidase in the mustard seedling (Sinapis alba L.) by phytochrome, Planta 121:39–50.Google Scholar
  2. Anderson, G. R., Jenner, E. L., and Mumford, F. E., 1969, Temperature and pH studies on phytochrome in vitro, Biochemistry 8:1182–1187.Google Scholar
  3. Balangé, A. P., 1974, Spectral changes of phytochrome in glycerol solutions, Physiol. Vég. 12:95–105.Google Scholar
  4. Balangé, A. P., and Rollin, P., 1973, Purification of photoreversible phytochrome from Avena seedlings by isoelectric focusing, Plant Science Letters 1:59–64.Google Scholar
  5. Boeshore, M. L., and Pratt, L. H., 1977, Is phytochrome changed as a result of association with a particulate subcellular fraction? Plant Physiol. Suppl. 59:101.Google Scholar
  6. Boisard, J., and Cordonnier, M. M., 1976, Association phytochrome-particules subcellulaires et métabolisme du photorécepteur, Physiol. Vég. 14:411–421.Google Scholar
  7. Boisard, J., Spruit, C. J. P., and Rollin, P., 1968, Phytochrome in seeds and an apparent dark reversion of Pr to Pfr, Mededelingen Landbouwhogeschool Wageningen 68(17): 1–5.Google Scholar
  8. Boisard, J., Marmé, D., and Briggs, W. R., 1974, In vivo properties of membrane-bound phytochrome, Plant Physiol. 54:272–276.Google Scholar
  9. Borthwick, H., 1972, History of phytochrome, in: Phytochrome (K. Mitrakos and W. Shropshire Jr., eds.), pp. 3–23, Academic Press, New York.Google Scholar
  10. Borthwick, H. A., Hendricks, S. B., and Parker, M. W., 1952a, The reaction controlling floral initiation, Proc. Natl. Acad. Sci. USA 38:929–934.Google Scholar
  11. Borthwick, H. A., Hendricks, S. B., Parker, M. W., Toole, E. H., and Toole, V. K., 19526, A reversible photoreaction controlling seed germination, Proc. Natl. Acad. Sci. USA 38:662–666.Google Scholar
  12. Borthwick, H. A., Hendricks, S. B., Toole, E. H., and Toole, V. K., 1954, Action of light on lettuce-seed germination, Botan. Gaz. 115:205–225.Google Scholar
  13. Borthwick, H. A., Hendricks, S. B., Schneider, M. J., Taylorson, R. B., and Toole, V. K., 1969, The high-energy light action controlling plant responses and development, Proc. Natl. Acad. Sci. USA 64:479–486.Google Scholar
  14. Briggs, W. R., and Chon, H. P., 1966, The physiological versus the spectrophotometric status of phytochrome in corn coleoptiles, Plant Physiol. 41:1159–1166.Google Scholar
  15. Briggs, W. R., and Fork, D. C., 1969a, Long-lived intermediates in phytochrome transformation. I. In vitro studies, Plant Physiol. 44:1081–1088.Google Scholar
  16. Briggs, W. R., and Fork, D. C., 1969b, Long-lived intermediates in phytochrome transformation. II. In vitro and in vivo studies, Plant Physiol. 44:1089–1094.Google Scholar
  17. Briggs, W. R., and Rice, H. V., 1972, Phytochrome: chemical and physical properties and mechanism of action, Ann. Rev. Plant Physiol. 23:293–334.Google Scholar
  18. Briggs, W. R., and Siegelman, H. W., 1965, Distribution of phytochrome in etiolated seedlings. Plant Physiol. 40:934–941.Google Scholar
  19. Briggs, W. R., Zollinger, W. D., and Platz, B. B., 1968, Some properties of phytochrome isolated from dark-grown oat seedlings (A vena sativa L.), Plant Physiol. 43:1239–1243.Google Scholar
  20. Briggs, W. R., Rice, H. V., Gardner, G., and Pike, C. S., 1972a, The nature of purified phytochrome, in: Recent Advances in Phytochemistry: Structural and Functional Aspects of Phytochemistry Vol. 5 (V. C. Runeckles and T. C. Tso, eds.), pp. 35–50, Academic Press, New York.Google Scholar
  21. Briggs, W. R., Gardner, G., and Hopkins, D. W., 1972b, Some technical problems in the purification of phytochrome, in: Phytochrome (K. Mitrakos and W. Shropshire Jr., eds.), pp. 145–158, Academic Press, London.Google Scholar
  22. Britz, S. J., Mackenzie, J. M. Jr., and Briggs, W. R., 1977, Non-homogeneous pigment distribution, multiple cell layers, and the determination of phytochrome by in vivo spectrophotometry, Photochem. Photobiol. 25:137–140.Google Scholar
  23. Brownlee, C., and Kendrick, R. E., 1977, Phytochrome and potassium uptake by mung bean hypocotyl sections, Planta 137:61–64.Google Scholar
  24. Butler, W. L., 1964, Absorption spectroscopy in vivo: theory and application. Ann. Rev. Plant Physiol. 15:451–470.Google Scholar
  25. Butler, W. L., 1972, Photochemical properties of phytochrome in vitro, in: Phytochrome (K. Mitrakos and W. Shropshire Jr., eds.), pp. 185–192, Academic Press, London.Google Scholar
  26. Butler, W. L., and Lane, H. C., 1965, Dark transformations of phytochrome in vivo. II., Plant Physiol. 40:13–17.Google Scholar
  27. Butler, W. L., Norris, K. H., Siegelman, H. W., and Hendricks, S. B., 1959, Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants, Proc. Natl. Acad. Sci. USA 45:1703–1708.Google Scholar
  28. Butler, W. L., Hendricks, S. B., and Siegelman, H. W., 1964a, Action spectra of phytochrome in vitro, Photochem. Photobiol. 3:521–528.Google Scholar
  29. Butler, W. L., Siegelman, H. W., and Miller, C. O., 1964b, Denaturation of phytochrome, Biochemistry 3:851–857.Google Scholar
  30. Caubergs, R., and De Greef, J. A., 1975, Studies on hook-opening in Phaseolus vulgaris L. by selective R/FR pretreatments of embryonic axis and primary leaves, Photochem. Photobiol. 22:139–144.Google Scholar
  31. Chae, Q., 1977, Excited states of photomorphogenic and visual receptors: Phytochrome and retinylic chromophores, Ph.D. dissertation, Texas Tech University, Lubbock, Texas.Google Scholar
  32. Chorney, W., and Gordon, S. A., 1966, Action spectrum and characteristics of the light-activated disappearance of phytochrome in oat seedlings, Plant Physiol. 41:891–896.Google Scholar
  33. Coleman, R. A., and Pratt, L. H., 1974a, Electron microscopic localization of phytochrome in plants using an indirect antibody-labeling method, J. Histochem. Cytochem. 22: 1039–1047.Google Scholar
  34. Coleman, R.A., and Pratt, L. H., 1974b, Phytochrome: immunocytochemical assay of synthesis and destruction, Planta 119:221–231.Google Scholar
  35. Coleman, R. A., and Pratt, L. H., 1974c, Subcellular localization of the red-absorbing form of phytochrome by immunocytochemistry, Planta 121:119–131.Google Scholar
  36. Cooke, R. J., and Kendrick, R. E., 1976, Phytochrome controlled gibberellin metabolism in etioplast envelopes, Planta 131:303–307.Google Scholar
  37. Cooke, R. J., Saunders, P. F., and Kendrick, R. E., 1975, Red light induced production of gib-berellin-like substances in homogenates of etiolated wheat leaves and in suspensions of intact etioplasts, Planta 124:319–328.Google Scholar
  38. Correll, D. L., Edwards, J. L., and Shropshire, W., Jr., 1968a, Multiple chromophore species in phytochrome, Photochem. Photobiol. 8:465–475.Google Scholar
  39. Correll, D. L., Edwards, J. L., and Medina, V. J., 1968b, Phytochrome in etiolated annual rye. II. Distribution of photoreversible phytochrome in the coleoptile and primary leaf, Planta 79:284–291.Google Scholar
  40. Correll, D. L., Steers, E., Jr., Towe, K. M., and Shropshire, W., Jr., 1968c, Phytochrome in etiolated annual rye. IV. Physical and chemical characterization of phytochrome, Biochim. Biophys. Acta 168:46–57.Google Scholar
  41. Correll, D. L., Edwards, J. L., and Shropshire, W., Jr., 1977, Phytochrome Bibliography, Smithsonian Institution Press, Washington, D. C.Google Scholar
  42. Craker, L. E., Abeles, F. B., and Shropshire, W., Jr., 1973, Light-induced ethylene production in Sorghum, Plant Physiol. 51:1082–1083.Google Scholar
  43. Cross, D. R., Linschitz, H., Kasche, V., and Tenenbaum, J., 1968, Low-temperature studies on phytochrome: light and dark reactions in the red to far-red transformation and new inter mediate forms of phytochrome, Proc. Natl. Acad. Sci. USA 61:1095–1101.Google Scholar
  44. Cuatrecasas, P., 1974, Membrane receptors, Ann. Rev. Biochem. 43:169–214.Google Scholar
  45. Cundiff, S. C., 1973, An immunochemical, biochemical, and spectral characterization of large Garry oat phytochrome, Ph.D. dissertation, Vanderbilt University, Nashville, Tennessee.Google Scholar
  46. Cundiff, S. C., and Pratt, L. H., 1973, Immunological determination of the relationship between large and small sizes of phytochrome, Plant Physiol. 51:210–213.Google Scholar
  47. Cundiff, S. C., and Pratt, L. H., 1975a, Immunological and physical characterization of the products of phytochrome proteolysis, Plant Physiol. 55:212–217.Google Scholar
  48. Cundiff, S. C., and Pratt, L. H., 1975b, Phytochrome characterization by rabbit antiserum against high molecular weight phytochrome, Plant Physiol. 55:207–211.Google Scholar
  49. De Greef, J. A., and Caubergs, R., 1972, Studies on greening of etiolated seedlings. I. Elimination of the lag phase of chlorophyll biosynthesis by a pre-illumination of the embryonic axis in intact plants, Physiol. Plant. 26:157–165.Google Scholar
  50. De Greef, J. A., and Caubergs, R., 1973, Studies on greening of etiolated seedlings. II. Leaf greening by phytochrome action in the embryonic axis, Physiol. Plant. 28:71–76.Google Scholar
  51. DeGreef, J. A., Caubergs, R., Verbelen, J. P., and Moereels, E., 1976, Phytochrome-mediated inter-organ dependence and rapid transmission of the light stimulus, in: Light and Plant Development (H. Smith, ed.), pp. 295–316, Butterworths, London.Google Scholar
  52. Dooskin, R. H., and Mancinelli, A. L., 1968, Phytochrome decay and coleoptile elongation in Avena following various light treatments. Bull. Torrey Botan. Club 95:474–487.Google Scholar
  53. Etzold, H., 1965, Der Polarotropismus und Phototropismus der Chloronemen von Dryopteris filix-mas (L.) Schott, Planta 64:254–280.Google Scholar
  54. Evans, A., 1976, Etioplast phytochrome and its in vitro control of gibberellin efflux, in: Light and Plant Development (H. Smith, ed.), pp. 129–141, Butterworths, London.Google Scholar
  55. Evans, A., and Smith, H., 1976a, Localization of phytochrome in etioplasts and its regulation in vitro of gibberellin levels. Proc. Natl. Acad. Sci. USA 73:138–142.Google Scholar
  56. Evans, A., and Smith, H., 1976b, Spectrophotometry evidence for the presence of phytochrome in the envelope membranes of barely etioplasts, Nature 259:323–325.Google Scholar
  57. Everett, M. S., and Briggs, W. R., 1970, Some spectral properties of pea phytochrome in vivo and in vitro, Plant Physiol. 45:679–683.Google Scholar
  58. Fondeville, J. C., Borthwick, H. A., and Hendricks, S. B., 1966, Leaflet movement of Mimosa pudica L. indicative of phytochrome action, Planta 69:357–364.Google Scholar
  59. Fox, L. R., 1977, The loss of phytochrome photoreversibility in vitro. II. Properties of killer and its reaction with phytochrome, Planta 135:217–223.Google Scholar
  60. Frankland, B., 1972, Biosynthesis and dark transformations of phytochrome, in: Phytochrome (K. Mitrakos and W. Shropshire Jr., eds.), pp. 195–225, Academic Press, London.Google Scholar
  61. Frosch, S., Drumm, H., and Mohr, H., 1977, Regulation of enzyme levels by phytochrome in mustard cotyledons: Multiple mechanisms? Planta 136:181–186.Google Scholar
  62. Fuad, N., and Yu, R., 1977a, Far-red and blue light-induced binding of phytochrome to a subcellular fraction of maize coleoptiles, Z. Pflanzenphysiologie 81:304–307.Google Scholar
  63. Fuad, N., and Yu, R, 1977b, An action spectrum of phytochrome binding to a subcellular fraction of maize coleoptiles, Photochem. Photobiol. 25:491–496.Google Scholar
  64. Furuya, M., and Manabe, K., 1976, Phytochrome in mitochondrial and microsomal fractions isolated from etiolated pea shoots, in: Light and Plant Development (H. Smith, ed.), pp. 143–155, Butterworths, London.Google Scholar
  65. Furuya, M., Hopkins, W. G., and Hillman, W. S., 1965, Effects of metal-cornplexing and sulfhydryl compounds on nonphotochemical phytochrome changes in vivo, Arch. Biochem. Biophys. 112:180–186.Google Scholar
  66. Galston, A. W., 1968, Microspectrophotometric evidence for phytochrome in plant nuclei, Proc. Natl. Acad. Sci. USA 61:454–460.Google Scholar
  67. Gardner, G., and Briggs, W. R., 1974, Some properties of phototransformation of rye phytochrome in vitro, Photochem. Photobiol. 19:367–377.Google Scholar
  68. Gardner, G., Pike, C. S., Rice, H. V., and Briggs, W. R., 1971, “Disaggregation” of phytochrome in vitro—a consequence of proteolysis, Plant Physiol. 48:686–693.Google Scholar
  69. Gardner, G., Thompson, W. F., and Briggs, W. R., 1974, Differential reactivity of the red- and far-red-absorbing forms of phytochrome to (14C) N-ethyl maleimide, Planta 117:367–372.Google Scholar
  70. Georgevich, G., Krauland, J., and Roux, S., 1976, Phytochrome interaction with lipid bilayers, Plant Physiol. Suppl. 57:20.Google Scholar
  71. Georgevich, G., Cedel, T. E., and Roux, S. J., 1977, Use of l25I-labeled phytochrome to quantitate phytochrome binding to membranes of A vena sativa, Proc. Natl. Acad. Sci. USA 74:4439–4443.Google Scholar
  72. Giles, K. L., and von Maltzahn, K. E., 1968, Spectrophotometry identification of phytochrome in two species of Mnium, Can. J. Bot. 46:305–306.Google Scholar
  73. Grill, R., 1977, Influence of chlorophyll content on phytochrome measurements in turnip coty-ledons, Planta 134:11–16.Google Scholar
  74. Grill, R., and Vince, D., 1965, Photocontrol of anthocyanin formation in turnip seedlings. II. The possible role of phytochrome in the response to prolonged irradiation with far-red or blue light, Planta 67:122–135.Google Scholar
  75. Grombein, S., and Rüdiger, W., 1976, On the molecular weight of phytochrome: a new high molecular phytochrome species in oat seedlings, Hoppe-Seyler’s Z. Physiol. Chem. 357:1015–1018.Google Scholar
  76. Grombein, S., Rüdiger, W., and Zimmerman, H., 1975a, The structures of the phytochrome chromophore in both photoreversible forms, Hoppe-Seyler’s Z. Physiol. Chem. 356: 1709–1714.Google Scholar
  77. Grombein, S., Rüdiger, W., Pratt, L., and Marmé, D., 1975b, Phytochrome pelletability in extracts of Avena shoots, Plant Science Letters 5:275–280.Google Scholar
  78. Hahn, L. W., and Miller, J. H., 1966, Light dependence of chloroplast replication and starch metabolism in the moss Polytrichum commune, Physiol. Plant. 19:134–141.Google Scholar
  79. Hartmann, K. M., 1966, A general hypothesis to interpret “high-energy phenomena” of photomorphogenesis on the basis of phytochrome, Photochem. Photobiol. 5:349–366.Google Scholar
  80. Hartmann, K. M., 1967, Ein Wirkungsspektrum der Photomorphogenese unter Hochenergie bedingungen und seine Interpretation auf der Basis des Phytochroms (Hypokotyl- wachstumshemmung bei Lactuca sativa L.), Z. Naturforsc. Ser. B 22:1172–1175.Google Scholar
  81. Haupt, W., 1972, Localization of phytochrome within the cell, in: Phytochrome (K. Mitrakos and W. Shropshire Jr., eds.), pp. 553–569, Academic Press, New York.Google Scholar
  82. Haupt, W., and Weisenseel, M. H., 1976, Physiological evidence and some thoughts on localized responses, intracellular localization and action of phytochrome, in: Light and Plant Development (H. Smith, ed.), pp. 63–74, Butterworths, London.Google Scholar
  83. Hendricks, S. B., 1964, Photochemical aspects of plant photoperiodicity, in: Photophysiology, Vol. I (A. C. Giese, ed.), pp. 305–331, Academic Press, New York.Google Scholar
  84. Hendricks, S. B., and Borthwick, H. A., 1959a, Photocontrol of plant development by the simultaneous excitations of two interconvertible pigments, Proc. Natl. Acad. Sci. USA 45:344–349.Google Scholar
  85. Hendricks, S. B., and Borthwick, H. A., 1959b, Photocontrol of plant development by the simultaneous excitation of two interconvertible pigments. II. Theory and control of anthocyanin synthesis, Botan. Gaz. 120:187–193.Google Scholar
  86. Hendricks, S. B., and Borthwick, H. A., 1967, The function of phytochrome in regulation of plant growth, Proc. Natl. Acad. Sci. USA 58:2125–2130.Google Scholar
  87. Hendricks, S. B., and Taylorson, R. B., 1978, Dependence of phytochrome action in seeds on membrane organization, Plant Physiol. 61:17–19.Google Scholar
  88. Hendricks, S. B., Toole, E. H., Toole, V. K., and Borthwick, H. A., 1959, Photocontrol of plant development by the simultaneous excitations of two interconvertible pigments. III. Control of seed germination and axis elongation, Botan. Gaz. 121:1–8.Google Scholar
  89. Hillman, W. S., 1967, The physiology of phytochrome, Ann. Rev. Plant Physiol. 18:301–324.Google Scholar
  90. Hillman, W. S., and Koukkari, W. L., 1967, Phytochrome effects in the nyctinastic leaf movements of Albizzia julibrissin and some other legumes, Plant Physiol. 42:1413–1418.Google Scholar
  91. Hodges, T. K., and Leonard, R. T., 1974, Purification of a plasma membrane-bound adenosine triphosphatase from plant roots, in: Methods in Enzymology, Biomembranes, Vol. 32B (S. P. Colowick and N. O. Kaplan, eds.), pp. 392–406, Academic Press, New York.Google Scholar
  92. Holmes, M. G., and McCartney, H. A., 1976, Spectral energy distribution in the natural environment and its implications for phytochrome function, in: Light and Plant Development (H. Smith, ed.), pp. 467–476, Butterworths, London.Google Scholar
  93. Holmes, M. G., and Smith, H., 1975, The function of phytochrome in plants growing in the natural environment, Nature 254:512–514.Google Scholar
  94. Holmes, M. G., and Smith, H., 1977a, The function of phytochrome in the natural environment—I. Characterization of daylight for studies in photomorphogenesis and photope-riodism, Photochem. Photobiol. 25:533–538.Google Scholar
  95. Holmes, M. G., and Smith, H., 1977b, The function of phytochrome in the natural environment—II. The influence of vegetation canopies on the spectral energy distribution of natural daylight, Photochem. Photobiol. 25:539–545.Google Scholar
  96. Holmes, M. G., and Smith, H., 1977c, The function of phytochrome in the natural environment—IV. Light quality and plant development, Photochem. Photobiol. 25:551–557.Google Scholar
  97. Hopkins, D. W., and Butler, W. L., 1970, Immunochemical and spectroscopic evidence for protein conformational changes in phytochrome transformations, Plant Physiol. 45:567–570.Google Scholar
  98. Horwitz, B. A., and Epel, B. L., 1977, A far-red form of phytochrome exhibiting in vivo spectral properties: studies with crude extracts of oats and squash, Plant Sci. Lett. 9:205–210.Google Scholar
  99. Hunt, R. E., and Pratt, L. H., 1979a, Phytochrome radioimmunoassay, Plant Physiol., in press.Google Scholar
  100. Hunt, R. E., and Pratt, L. H., 19796, Phytochrome immunoaffinity purification, Plant Physiol., in press.Google Scholar
  101. Jabben, M., and Deitzer, G. F., 1978a, A method for measuring phytochrome in plants grown in white light, Photochem. Photobiol. 27:799–802.Google Scholar
  102. Jabben, M., and Deitzer, G. F., 1978b, Spectrophotometry phytochrome measurements in light-grown A vena sativa L., Planta 143:309–313.Google Scholar
  103. Jabben, M., and Deitzer, G. F., 1979, Effects of the herbicide San 9789 on photomorphogenic responses, Plant Physiol., in press.Google Scholar
  104. Jabben, M., and Mohr, H., 1975, Stimulation of the Shibata shift by phytochrome in the cotyledons of the mustard seedling Sinapis alba L., Photochem. Photobiol. 22:55–58.Google Scholar
  105. Jabben, M., and Schäfer, E., 1976, Rhythmic oscillations of phytochrome and its pelletability in Cucurbita pepo L., Nature 259:114–115.Google Scholar
  106. Johnson, C. B., 1976, Rapid activation by phytochrome of nitrate reductase in the cotyledons of Sinapis alba, Planta 128:127–131.Google Scholar
  107. Jose, A. M., 1977, Phytochrome modulation of ATPase activity in a membrane fraction from Phaseolus, Planta 137:203–206.Google Scholar
  108. Jose, A. M., Vince-Prue, D., and Hilton, J. R., 1977, Chlorophyll interference with phytochrome measurement, Planta 135:119–123.Google Scholar
  109. Kadkade, P., and Seibert, M., 1977, Phytochrome-regulated organogenesis in lettuce tissue culture, Nature 270:49–50.Google Scholar
  110. Kass, L. B., and Pratt, L. H., 1978, Immunocytochemical assay of the time-course of phytochrome sequestering, Plant Physiol. Suppl. 61:12.Google Scholar
  111. Kendrick, R. E., 1977, Phototransformations of phytochrome, in: Research in Photobiology (A. Castellani, ed.), pp. 521–529, Plenum Press, New York.Google Scholar
  112. Kendrick, R. E., and Frankland, B., 1976, Phytochrome and Plant Growth, Edward Arnold, London.Google Scholar
  113. Kendrick, R. E., and Smith, H., 1976, Assay and isolation of phytochrome, in: Chemistry and Biochemistry of Plant Pigments, 2nd ed., Vol. 2 (T. W. Goodwin, ed.), pp. 334–364, Academic Press, London.Google Scholar
  114. Kendrick, R. E., and Spruit, C. J. P., 1972, Light maintains high levels of phytochrome intermediates, Nature New Biol. 237:281–282.Google Scholar
  115. Kendrick, R. E., and Spruit, C. J. P., 1973a, Phytochrome intermediates in vivo.l. Effects of temperature, light intensity, wavelength and oxygen on intermediate accumulation, Photochem. Photobiol. 18:139–144.Google Scholar
  116. Kendrick, R. E., and Spruit, C. J. P., 1973b, Phytochrome intermediates in vivo. III. Kinetic analysis of intermediate reactions at low temperature, Photochem. PhotobioL 18:153–159.Google Scholar
  117. Kendrick, R. E., and Spruit, C. J. P., 1974, Inverse dark reversion of phytochrome: an explanation, Planta 120:265–272.Google Scholar
  118. Kendrick, R. E., and Spruit, C. J. P., 1976, Intermediates in the photoconversion of phytochrome, in: Light and Plant Development (H. Smith, ed.), pp. 31–43, Butterworths, London.Google Scholar
  119. Kendrick, R. E., and Spruit, C. J. P., 1977, Phototransformations of phytochrome, Photochem. Photobiol. 26:201–214.Google Scholar
  120. Kidd, G. H., and Pratt, L. H., 1973, Phytochrome destruction: an apparent requirement for protein synthesis in the induction of the destruction mechanism, Plant Physiol. 52:309–311.Google Scholar
  121. Kidd, G. H., Hunt, R. E., Boeshore, M., and Pratt, L. H., 1978, Asymmetry in the primary structure of undegraded phytochrome, Nature 276:733–735.Google Scholar
  122. Kinnersley, A. M., and Davies, P. J., 1976, Comparison of three phytochrome-mediated processes in the hypocotyl of mustard, Plant Physiol. 58:777–782.Google Scholar
  123. Kondo, N., Inoue, Y., and Shibata, K., 1973, Phytochrome distribution in Avena seedlings measured by scanning a single seedling, Plant Science Letters 1:165–168.Google Scholar
  124. Laemmli, U. K., 1970, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature 227:680–685.Google Scholar
  125. Lane, H. C., Siegelman, H. W., Butler, W. L., and Firer, E. M., 1963, Detection of phytochrome in green plants, Plant Physiol. 38:414–416.Google Scholar
  126. Linschitz, H., and Kasche, V., 1967, Kinetics of phytochrome conversion: multiple pathways in the Pr to Pfr reaction, as studied by double-flash technique, Proc. Natl. Acad. Sci. USA 58:1059–1064.Google Scholar
  127. Linschitz, H., Kasche, V., Butler, W. L., and Siegelman, H. W., 1966, The kinetics of phytochrome conversion, J. Biol. Chem. 241:3395–3403.Google Scholar
  128. Lisansky, S. G., and Galston, A. W., 1974, Phytochrome stability in vitro. I. Effect of metal ions, Plant Physiol. 53:352–359.Google Scholar
  129. Lisansky, S. G., and Galston, A. W., 1976, Phytochrome stability in vitro. II. A low molecular weight protective factor, Plant Physiol. 57:188–191.Google Scholar
  130. Loppert, H., Kronberger, W., and Kandeler, R., 1978, Phytochrome-mediated changes in the membrane potential of subepidermal cells of Lemna paucicostata 6746, Planta 138:133–136.Google Scholar
  131. Mackenzie, J. M., Jr., 1976, Phytochrome distribution and redistribution as revealed by immunocytochemistry, Ph.D. dissertation, Harvard University, Cambridge, Massachusetts.Google Scholar
  132. Mackenzie, J. M., Jr., Coleman, R. A., Briggs, W. R., and Pratt, L. H., 1975, Reversible redistribution of phytochrome within the cell upon conversion to its physiologically active form, Proc. Natl. Acad. Sci. USA 72:799–803.Google Scholar
  133. Mackenzie, J. M., Jr., Briggs, W. R., and Pratt, L. H., 1978a, Phytochrome photoreversibility: empirical test of the hypothesis that it varies as a consequence of compartmentalization, Planta 141:129–134.Google Scholar
  134. Mackenzie, J. M., Jr., Briggs, W. R„ and Pratt, L. H., 1978b, Intracellular phytochrome distribution as a function of its molecular form and of its destruction, Amer. J. Bot. 65:671–676.Google Scholar
  135. Manabe, K., and Furuya, M., 1971, Factors controlling rates of nonphotochemical transformation of Pisum phytochrome in vitro, Plant Cell Physiol. 12:95–101.Google Scholar
  136. Manabe, K., and Furuya, M., 1974, Phytochrome-dependent reduction of nicotinamide nucleotides in the mitochondrial fraction isolated from etiolated pea epicotyls, Plant Physiol. 53:343–347.Google Scholar
  137. Manabe, K., and Furuya, M., 1975a, Distribution and nonphotochemical transformation of phytochrome in subcellular fractions from Pisum epicotyls, Plant Physiol. 56:772–775.Google Scholar
  138. Manabe, K., and Furuya, M., 1975b, Experimentally induced binding of phytochrome to mitochondrial and microsomal fractions in etiolated pea shoots, Planta 123:207–215.Google Scholar
  139. Mancinelli, A. L., and Borthwick, H. A., 1964, Photocontrol of germination and phytochrome reaction in dark-germinating seeds of Lactuca sativa Z., Annali di Botanica 28:9–24.Google Scholar
  140. Mancinelli, A. L., and Rabino, I., 1975, Photocontrol of anthocyanin synthesis. IV. Dose dependence and reciprocity relationships in anthocyanin synthesis, Plant Physiol. 56:351–355.Google Scholar
  141. Mancinelli, A. L., and Rabino, I., 1978, The “high-irradiance responses” of plant photomor- phogenesis, Botanical Review 44:129–180.Google Scholar
  142. Marmé, D., 1974, Binding properties of the plant photoreceptor phytochrome to membranes, J. Supramolecular Structure 2:751–768.Google Scholar
  143. Marmé, D., 1977, Phytochrome: membranes as possible sites of primary action, Ann. Rev. Plant Physiol. 28:173–198.Google Scholar
  144. Marmé, D., and Schäfer, E., 1972, On the localization and orientation of phytochrome molecules in corn coleoptiles (Zea mays L.), Z. Pflanzenphysiologie 67:192–194.Google Scholar
  145. Marmé, D., Marchai, B., and Schäfer, E., 1971, A detailed analysis of phytochrome decay and dark reversion in mustard cotyledons, Planta 100:331–336.Google Scholar
  146. Marmé, D., Boisard, J., and Briggs, W. R., 1973, Binding properties in vitro of phytochrome to a membrane fraction, Proc. Natl. Acad. Sci. USA 70:3861–3865.Google Scholar
  147. Marmé, D., Bianco, J., and Gross, J., 1976, Evidence for phytochrome binding to plasma membrane and endoplasmic reticulum, in: Light and Plant Development (H. Smith, ed.), pp. 95–110, Butterworths, London.Google Scholar
  148. McArthur, J. A., and Briggs, W. R., 1971, In vivo phytochrome reversion in immature tissue of the Alaska pea seedling, Plant Physiol. 48:46–49.Google Scholar
  149. Mitrakos, K., and Shropshire, W., Jr. (eds.), 1972, Phytochrome, Academic Press, New York.Google Scholar
  150. Mohr, H., 1959, Der Lichteinfluss auf das Wachstum der Keimblätter bei Sinapis alba L., Planta 53:219–245.Google Scholar
  151. Mohr, H., 1966, Differential gene activation as a mode of action of phytochrome 730, Photochem. Photobiol. 5:469–483.Google Scholar
  152. Mohr, H., 1972, Lectures on Photomorphogenesis, Springer-Verlag, New York.Google Scholar
  153. Mohr, H., 1977, Phytochrome and chloroplast development, Endeavour, New Series 1:107–114.Google Scholar
  154. Mohr, H., and Noble, A., 1960, Die Steuerung der Schliessung und Öffnung des Plumula-Hakens bei Keimlingen von Lactuca sativa durch sichtbare Strahlung, Planta 55:327–342.Google Scholar
  155. Mohr, H., and Oelze-Karow, H., 1976, Phytochrome action as a threshold phenomenon, in: Light and Plant Development (H. Smith, ed.), pp. 257–284, Butterworths, London.Google Scholar
  156. Morgan, D. C., and Smith, H., 1976, Linear relationship between phytochrome photoequilib-rium and growth in plants under simulated natural radiation, Nature 262:210–212.Google Scholar
  157. Mumford, F. E., and Jenner, E. L., 1966, Purification and characterization of pytochrome from oat seedlings, Biochemistry 5:3657–3662.Google Scholar
  158. Mumford, F. E., and Jenner, E. L., 1971, Catalysis of the phytochrome dark reaction by reducing agents, Biochemistry 10:98–101.Google Scholar
  159. Negbi, M., Hopkins, D. W., and Briggs, W. R., 1975, Acceleration of dark reversion of phytochrome in vitro by calcium and magnesium, Plant Physiol. 56:157–159.Google Scholar
  160. Newman, I. A., 1974, Electric responses of oats to phytochrome transformation, in: Mechanisms of Regulation of Plant Growth, Bull. 12 (R. L. Bielske, A. R. Ferguson, and M. M. Cresswell, eds.), pp. 355–360, The Royal Society of New Zealand, Wellington.Google Scholar
  161. Newman, I. A., and Briggs, W. R., 1972, Phytochrome-mediated electric potential changes in oat seedlings, Plant Physiol. 50:687–693.Google Scholar
  162. Oelze-Karow, H., and Mohr, H,. 1973, Quantitative correlation between spectrophotometric phytochrome assay and physiological response, Photochem. Photobiol. 18:319–330.Google Scholar
  163. Oelze-Karow, H., and Mohr, H., 1974, Interorgan correlation in a phytochrome-mediated response in the mustard seedling, Photochem. Photobiol. 20:127–131.Google Scholar
  164. Oelze-Karow, H., and Mohr, H., 1976, An attempt to localize the threshold reaction in phytochrome-mediated control of lipoxygenase synthesis in the mustard seedling, Photochem. Photobiol. 23:61–67.Google Scholar
  165. Oelze-Karow, H., Schäfer, E., and Mohr, H., 1976, On the physiological significance of dark reversion of phytochrome in the mustard seedling, Photochem. Photobiol. 23:55–59.Google Scholar
  166. Parker, M. W., Hendricks, S. B., Borthwick, H. A., and Scully, N. J., 1946, Action spectrum for the photoperiodic control of floral initiation of short-day plants, Botan. Gaz. 108:1–26.Google Scholar
  167. Penel, C., Greppin, H., and Boisard, J., 1976, In vitro photomodulation of a peroxidase activity through membrane-bound phytochrome, Plant Science Lett. 6:117–121.Google Scholar
  168. Pike, C. S., and Briggs, W. R., 1972a, Partial purification and characterization of a phytochrome-degrading neutral protease from etiolated oat shoots, Plant Physiol. 49:521–530.Google Scholar
  169. Pike, C. S., and Briggs, W. R., 1972b, The dark reactions of rye photochrome in vivo and in vitro, Plant Physiol. 49:514–520.Google Scholar
  170. Pike, C. S., and Richardson, A. E., 1977, Phytochrome-controlled hydrogen ion excretion by A vena coleoptiles, Plant Physiol. 59:615–617.Google Scholar
  171. Pratt, L. H., 1973, Comparative immunochemistry of phytochrome, Plant Physiol. 51:203–209.Google Scholar
  172. Pratt, L. H., 1975a, Kinetic analysis of a very rapidly reverting population of high-molecular-weight phytochrome, Photochem. Photobiol. 21:99–103.Google Scholar
  173. Pratt, L. H., 1975b, Photochemistry of high molecular weight phytochrome in vitro, Photochem. Photobiol. 22:33–36.Google Scholar
  174. Pratt, L. H., 1976, Re-examination of photochemical properties and absorption characteristics of phytochrome using high-molecular-weight preparations, in: Light and Plant Development. Smith, ed.), pp. 19–30, Butterworths, London.Google Scholar
  175. Pratt, L. H., 1977, Progress toward an understanding of the molecular mode of action of phytochrome, in: Research in Photobiology (A. Castellani, ed.), pp. 511–519, Plenum Press, New York.Google Scholar
  176. Pratt, L. H., 1978, Molecular properties of phytochrome, Photochem. Photobiol. 27:81–105.Google Scholar
  177. Pratt, L. H., and Briggs, W. R., 1966, Photochemical and nonphotochemical reactions of phytochrome in vivo, Plant Physiol. 41:467–474.Google Scholar
  178. Pratt, L. H., and Butler, W. L., 1968, Stabilization of phytochrome intermediates by low temperature, Photochem. Photobiol. 8:477–485.Google Scholar
  179. Pratt, L. H., and Butler, W. L., 1970a, Phytochrome conversion by ultraviolet light, Photochem. Photobiol. 11:503–509.Google Scholar
  180. Pratt, L. H., and Butler, W. L., 1970b, The temperature dependence of phytochrome transformations, Photochem. Photobiol. 11:361–369.Google Scholar
  181. Pratt, L. H., and Coleman, R. A., 1971, Immunocytochemical localization of phytochrome, Proc. Natl. Acad. Sci. USA 68:2431–2435.Google Scholar
  182. Pratt, L. H., and Coleman, R. A., 1974, Phytochrome distribution in etiolated grass seedlings as assayed by an indirect antibody-labelling method, Amer. J. Bot. 61:195–202.Google Scholar
  183. Pratt, L. H., and Cundiff, S. C., 1975, Spectral characterization of high-molecular-weight phytochrome, Photochem. Photobiol. 21:91–97.Google Scholar
  184. Pratt, L. H., and Marmé, D., 1976, Red light-enhanced phytochrome pelletability: a re-examination and further characterization, Plant Physiol. 58:686–692.Google Scholar
  185. Pratt, L. H., Kidd, G. H., and Coleman, R. A., 1974, An immunochemical characterization of the phytochrome destruction reaction, Biochim. Biophys. Acta 365:93–107.Google Scholar
  186. Pratt, L. H., Coleman, R. A., and Mackenzie, J. M., Jr., 1976, Immunological visualisation of phytochrome, in: Light and Plant Development (H. Smith, ed.), pp. 75–94, Butterworths, London.Google Scholar
  187. Quail, P. H., 1974, Particle-bound phytochrome: spectral properties of bound and unbound fractions, Planta 118:345–355.Google Scholar
  188. Quail, P. H., 1975a, Interaction of phytochrome with other cellular components, Photochem. Photobiol. 22:299–301.Google Scholar
  189. Quail, P. H., 1915b, Particle-bound phytochrome: association with a ribonucleoprotein fraction from Cucurbita pepo L., Planta 123:223–234.Google Scholar
  190. Quail, P. H., 1975c, Particle-bound phytochrome: the nature of the interaction between pigment and particulate fractions, Planta 123:235–246.Google Scholar
  191. Quail, P. H., 1978a, Irradiation-enhanced phytochrome pelletability in Avena: in vivo development of a potential to pellet and the role of Mg2+ in its expression, Photochem. Photobiol. 27:147–153.Google Scholar
  192. Quail, P. H., 1978b, Irradiation-enhanced phytochrome pelletability in Avena: Pigment release by Mg2+-gradient elution, Photochem. Photobiol. 27:759–765.Google Scholar
  193. Quail, P. H., and Briggs, W. R., 1978, Irradiation-enhanced phytochrome pelletability: requirement for phosphorylative energy in vivo. Plant Physiol. 62:773–778.Google Scholar
  194. Quail, P. H., and Gressel, J., 1976, Particle-bound phytochrome: interaction of the pigment with ribonucleoprotein material from Cucurbita pepo L., in: Light and Plant Development (H. Smith, ed.), pp. 111–128, Butterworths, London.Google Scholar
  195. Quail, P. H., Marme, D., and Schäfer, E., 1973, Particle-bound phytochrome from maize and pumpkin, Nature New Biol. 245:189–191.Google Scholar
  196. Rabino, I., Mancinelli, A. L., and Kusmanoff, K. M., 1977, Photocontrol of anthocyanin synthesis. VI. Spectral sensitivity, irradiance dependence, and reciprocity relationships, Plant Physiol. 59:569–573.Google Scholar
  197. Racusen, R. H., 1976, Phytochrome control of electrical potentials and intercellular couplings in oat-coleoptile tissue, Planta 132:25–29.Google Scholar
  198. Racusen, R. H., and Etherton, B., 1975, Role of membrane-bound, fixed-charge changes in phytochrome-mediated mung bean root-tip adherence phenomenon, Plant Physiol. 55:491–495.Google Scholar
  199. Racusen, R., and Miller, K., 1972, Phytochrome-induced adhesion of mung bean root tips to plantinum electrodes in a direct current field, Plant Physiol. 49:654–655.Google Scholar
  200. Racusen, R., and Satter, R. L., 1975, Rhythmic and phytochrome-regulated changes in transmembrane potential in Samanea pulvini, Nature 255:408–410.Google Scholar
  201. Rice, H. V., and Briggs, W. R., 1973a, Immunochemistry of phytochrome, Plant Physiol. 51:939–945.Google Scholar
  202. Rice, H. V., and Briggs, W. R., 1973b, Partial characterization of oat and rye phytochrome, Plant Physiol. 51:927–938.Google Scholar
  203. Rice, H. V., Briggs, W. R., and Jackson-White, C. J., 1973, Purification of oat and rye phytochrome, Plant Physiol. 51:917–926.Google Scholar
  204. Roux, S. J., 1972, Chemical evidence for conformational differences between the red- and far-red-absorbing forms of oat phytochrome, Biochemistry 11:1930–1936.Google Scholar
  205. Roux, S. J., and Yguerabide, J., 1973, Photoreversible conductance changes induced by phytochrome in model lipid membranes, Proc. Natl. Acad. Sci. USA 70:762–764.Google Scholar
  206. Roux, S. J., Lisansky, S. G., and Stoker, B. M., 1975, Purification and partial carbohydrate analysis of phytochrome from A vena sativa, Physiol. Plant. 35:85–90.Google Scholar
  207. Rubinstein, B., Drury, K. S., and Park, R. B., 1969, Evidence for bound phytochrome in oat seedlings, Plant Physiol. 44:105–109.Google Scholar
  208. Satter, R. L., and Galston, A. W., 1976, The physiological functions of phytochrome, in: Chemistry and Biochemistry of Plant Pigments, 2nd ed., Vol. 1 (T. W. Goodwin, ed.), pp. 681–735, Academic Press, London.Google Scholar
  209. Satter, R. L., Geballe, G. T., and Galston, A. W., 1974, Potassium flux and leaf movement in Samanea saman. II. Phytochrome controlled movement, J. Gen. Physiol. 64:431–442.Google Scholar
  210. Satter, R. L., Schrempf, M., Chaudri, J., and Galston, A. W., 1977, Phytochrome and arcadian clocks in Samanea. Rhythmic redistribution of potassium and chloride within the pulvinus during long dark periods. Plant Physiol. 59:231–235.Google Scholar
  211. Schäfer, E., 1975a, A new approach to explain the “high irradiance responses” of photomor-phogenesis on the basis of phytochrome, J. Math. Biol. 2:41–56.Google Scholar
  212. Schäfer, E., 1975b, Analysis of the binding of phytochrome to particulate fractions, Photochem. Photobiol. 21:189–191.Google Scholar
  213. Schäfer, E., 1975c, Evidence for binding of phytochrome to membranes, in: Membrane Transport in Plants (U. Zimmermann and J. Dainty, eds.), pp. 435–440, Springer-Verlag, Berlin.Google Scholar
  214. Schäfer, E., 1976, The “high irradiance reaction”, in: Light and Plant Development (H. Smith, ed.), pp. 45–59, Butterworths, London.Google Scholar
  215. Schäfer, E., 1978, Variation in the rates of synthesis and degradation of phytochrome in cotyledons of Cucurbita pepo I., Photochem. Photobiol. 27:775–780.Google Scholar
  216. Schäfer, E., Schmidt, W., and Mohr, H., 1973, Comparative measurements of phytochrome in cotyledons and hypocotyl hook of mustard (Sinapis alba L.), Photochem. Photobiol. 18:331–334.Google Scholar
  217. Schäfer, E., Lassig, T-U., and Schöpfer, P., 1975, Photocontrol of phytochrome destruction in grass seedlings: The influence of wavelength and irradiance, Photochem. Photobiol. 22:193–202.Google Scholar
  218. Schäfer, E., Lassig, T-U., and Schöpfer, P., 1976, Photocontrol of phytochrome destruction and binding in dicotyledenous vs. monocotyledenous seedlings. The influence of wavelength and irradiance, Photochem. Photobiol. 24:567–572.Google Scholar
  219. Scheer, H., 1976, Studies on plant bile pigments: characterization of a model for the phytochrome Pr chromophore, Z. Naturforsch. 31c:413–417.Google Scholar
  220. Scheer, H., and Krauss, C., 1977, Studies on bile pigments—3. Oxidative photodimerization of a phytochrome Pr model pigment and its thermal reversion, Photochem. Photobiol. 25:311–314.Google Scholar
  221. Schmidt, H-W., and Hampp, R., 1977, Regulation of membrane properties of mitochondria and plastids during chloroplast development. II. The action of phytochrome in a cell-free system, Z. Pflanzenphysiol. 82:428–434.Google Scholar
  222. Schmidt, W., and Schäfer, E., 1974, Dependence of phytochrome dark reactions on the initial photostationary state, Planta 116:267–272.Google Scholar
  223. Schoch, S., and Rüdiger, W., 1976, Modelle fur Phytochrom, Liebigs Ann. Chem. 1976:559–565.Google Scholar
  224. Schopfer, P., 1977, Phytochrome control of enzymes, Ann. Rev. Plant Physiol. 28:223–252.Google Scholar
  225. Shimazaki, Y., and Furuya, M., 1975, Isolation of a naturally occurring inhibitor for dark Pfr reversion from etiolated Pisum epicotyls, Plant and Cell Physiol. 16:623–630.Google Scholar
  226. Siegelman, H. W., and Firer, E. M., 1964, Purification of phytochrome from oat seedlings, Biochemistry 3:418–423.Google Scholar
  227. Siegelman, H. W., and Hendricks, S. B., 1958, Photocontrol of alcohol, aldehyde, and anthoc-yanin production in apple skin, Plant Physiol. 33:409–413.Google Scholar
  228. Siegelman, H. W., Turner, B. C., and Hendricks, S. B., 1966, The chromophore of phytochrome, Plant Physiol. 41:1289–1292.Google Scholar
  229. Singer, S. J., 1974, The molecular organization of membranes, Ann. Rev. Biochemistry 43:805–833.Google Scholar
  230. Smith, H., 1975, Phytochrome and Photomorphogenesis, McGraw-Hill, London.Google Scholar
  231. Smith, H., 1976a, The mechanism of action and the function of phytochrome, in: Light and Plant Development (H. Smith, ed.), pp. 493–502, Butterworths, London.Google Scholar
  232. Smith, H. (ed.), 1976b, Light and Plant Development, Butterworths, London.Google Scholar
  233. Smith, H., 1976c, Phytochrome-mediated assembly of polyribosomes in etiolated bean leaves, Eur. J. Biochem. 65:161–170.Google Scholar
  234. Smith, H., and Elliott, J., 1975, The isolation of high-molecular-weight phytochrome from maize seedlings by the membrane-binding method, Plant Sci. Lett. 5:1–6.Google Scholar
  235. Smith, H., and Holmes, M. G., 1977, The function of phytochrome in the natural environment—III. Measurement and calculation of phytochrome photoequilibria, Photochem. Photobiol. 25:547–550.Google Scholar
  236. Smith, H., and Kendrick, R. E., 1976, The structure and properties of phytochrome, in: Chemistry and Biochemistry of Plant Pigments, 2nd ed., Vol. 1 (T. W. Goodwin, ed.), pp. 377–424, Academic Press, London.Google Scholar
  237. Smith, W. O., Jr., and Correll, D. L., 1975, Phytochrome: a re-examination of the quaternary structure, Plant Physiol. 56:340–343.Google Scholar
  238. Song, P-S., and Chin, C-A., 1977, Excited states of photobiological receptors. II. Chlorophylls, phytochrome, and stentorin, Int. J. Quantum Chem., Quantum Biol. Symp. 4:305–315.Google Scholar
  239. Spruit, C. J. P., 1966, Low-temperature action spectra for transformations of photoperiodic pigments, Biochim. Biophys. Acta 120:454–456.Google Scholar
  240. Spruit, C. J. P., 1970, Spectrophotometers for the study of phytochrome in vivo, Mededelingen Landbouwhogeschool Wageningen 70(14): 1–18.Google Scholar
  241. Spruit, C. J. P., 1971, Sensitive quasi-continuous measurement of photo-induced transmission changes, Mededelingen Landbouwhogeschool Wageningen 71(21): 1–6.Google Scholar
  242. Spruit, C. J. P., 1972, Estimation of phytochrome by spectrophotometry in vivo: Instrumentation and interpretation, in: Phytochrome (K. Mitrakos and W. Shropshire, Jr., eds.), pp. 77–104, Academic Press, London.Google Scholar
  243. Spruit, C. J. P., and Kendrick, R. E., 1973, Phytochrome intermediates in vivo. II. Characterisation of intermediates by difference spectrophotometry, Photochem. Photobiol. 18:145–152.Google Scholar
  244. Spruit, C. J. P., and Kendrick, R. E., 1977, Phototransformations of phytochrome: the characterization of Lumi-F and M eta-Fa, Photochem. Photobiol. 26:133–138.Google Scholar
  245. Stoker, B. M., Roux, S. J., and Brown, W. E., 1978a, Evidence for symmetry in the phytochrome subunit, Nature 271:180–182.Google Scholar
  246. Stoker, B. M., McEntire, K., and Roux, S. J., 1978b, Identification of tryptic chromopeptides of phytochrome on sodium dodecyl sulfate gels: Implications for structure, Photochem. Photobiol. 27:597–602.Google Scholar
  247. Stone, H. J., and Pratt, L. H., 1978, Phytochrome destruction: apparent inhibition by ethylene, Plant. Physiol., 62:922–923.Google Scholar
  248. Stone, H. J., and Pratt, L. H., 1979, Characterization of the destruction of phytochrome in the red-absorbing form, Plant Physiol., in press.Google Scholar
  249. Sugimoto, T., Ishikawa, K., and Suzuki, H., 1976, On the models for phytochrome chromo-phore. III., J. Physical Soc. of Japan 40:258–266.Google Scholar
  250. Tanada, T., 1968a, A rapid photoreversible response of barley root tips in the presence of 3-indoleacetic acid, Proc. Natl. Acad. Sci. USA 59:376–380.Google Scholar
  251. Tanada, T., 1968b, Substances essential for a red-far-red light reversible attachment of mung bean root tips to glass, Plant Physiol. 43:2070–2071.Google Scholar
  252. Tasker, R., and Smith, H., 1977, The function of phytochrome in the natural environment—V. Seasonal changes in radiant energy quality in woodlands, Photochem. Photobiol. 26:487–491.Google Scholar
  253. Taylor, A. O., and Bonner, B. A., 1967, Isolation of phytochrome from the alga Mesotaenium and liverwort Sphaerocarpos, Plant Physiol. 42:762–766.Google Scholar
  254. Taylorson, R. B., and Hendricks, S. B., 1971, Changes in phytochrome expressed by germination of Amaranthus retroflexus L. seeds, Plant Physiol. 47:619–622.Google Scholar
  255. Tepfer, D. A., and Bonnett, H. T., 1972, The role of phytochrome in the geotropic behavior of roots of Convolvulus arvensis, Planta 106:311–324.Google Scholar
  256. Tezuka, T., and Yamamoto, Y., 1975, Control of ion absorption by phytochrome, Planta 122:239–244.Google Scholar
  257. Tobin, E. M., and Briggs, W. R., 1973, Studies on the protein conformation of phytochrome, Photochem. Photobiol. 18:487–495.Google Scholar
  258. Tobin, E. M., Briggs, W. R., and Brown, P. K., 1973, The role of hydration in the photo-transformation of phytochrome, Photochem. Photobiol. 18:497–503.Google Scholar
  259. Tong, W-F., and Schöpfer, P., 1978, Absence of Pfr destruction in the modulation of phenylalanine ammonia-lyase synthesis of mustard cotyledons, Plant Physiol. 61:59–61.Google Scholar
  260. Weber, K., and Osborn, M., 1969, The reliability of molecular weight determinations by dodecyl sulfate-Polyacrylamide gel electrophoresis, J. Biol. Chem. 244:4406–4412.Google Scholar
  261. Weisenseel, M. H., and Ruppert, H. K., 1977, Phytochrome and calcium ions are involved in light-induced membrane depolarization in Nitella, Planta 137:225–229.Google Scholar
  262. Wellburn, F. A. M., and Wellburn, A. R., 1973, Response of etioplasts in situ and in isolated suspensions to pre-illumination with various combinations of red, far-red, and blue light, New Phytol. 72:55–60.Google Scholar
  263. Wilkins, M. B., 1965, Red light and the geotropic response of the Avena coleoptile, Plant Physiol. 40:24–34.Google Scholar
  264. Williamson, F. A., Morré, D. J. and Jaffe, M. J., 1975, Association of phytochrome with rough-surfaced endoplasmic reticulum fractions from soybean hypocotyl, Plant Physiol. 56:738–743.Google Scholar
  265. Yamamoto, K. R., and Alberts, B. M., 1976, Steroid receptors: elements for modulation of eukaryotic transcription, Ann. Rev. Biochemistry 45:721–746.Google Scholar
  266. Yamamoto, K. T., and Furuya, M., 1975, Photoreversible binding in vitro of cytosolic phytochrome to particulate fraction isolated from pea epicotyls, Planta 127:177–186.Google Scholar
  267. Yu, R., 1975a, Characteristics of phytochrome in glutaraldehyde-treated maize coleoptiles, Aust. J. Plant Physiol. 2:281–289.Google Scholar
  268. Yu, R., 1975b, Characterization of the phytochrome-containing particles obtained by glutaral- dehyde pre-fixation of maize coleoptiles, J. Exper. Bot. 26:808–822.Google Scholar
  269. Yu, R., 1975c, Distribution of phytochrome in subcellular fractions from maize coleoptiles following glutaraldehyde treatment, Aust. J. Plant Physiol. 2:273–279.Google Scholar
  270. Yu, R., 1977, The active form of phytochrome: a new hypothesis based on phytochrome pelletability studies, J. Theoret. Biol. 69:581–595.Google Scholar
  271. Yu, R., and Carter, J., 1976a, Cross-linking phytochrome to its receptor in situ using imi-doesters, J. Exper. Bot. 27:283–293.Google Scholar
  272. Yu, R., and Carter, J., 1976b, Gel filtration of soluble and solubilized phytochrome, Ann. Bot. 40:647–649.Google Scholar
  273. Yu, R., and Carter, J., 1976c, Chromatographic behaviour of phytochrome following its in vivo phototransformation, Plant Cell Physiol. 17:1321–1328.Google Scholar
  274. Yu, R., and Carter, J., 1976d, Partial characterization of the interaction between phytochrome and a particulate fraction of maize coleoptiles, Plant Cell Physiol. 17:1309–1319.Google Scholar
  275. Yu, R., Fuad, N., and Carr, D. J., 1976a, In vivo phototransformation of phytochrome in relation to its binding to a particulate fraction of maize coleoptiles, Plant Cell Physiol. 17:1131–1139.Google Scholar
  276. Yu, R., Carter, J., and Osawa, T., 1976b, Separation of particulate phytochrome and plasma membranes of maize coleoptiles by density gradient centrifugation, J. Exper. Bot. 27:294–302.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Lee H. Pratt
    • 1
  1. 1.Botany DepartmentUniversity of GeorgiaAthensUSA

Personalised recommendations