Advertisement

Energy Transfer Processes in Bioluminescence

  • William W. Ward

Abstract

Bioluminescence is the efficient conversion of chemical energy into visible light energy by biological systems. As a special case of chem-iluminescence (catalyzed by an enzyme), bioluminescence is closely related to fluorescence, differing only in the mechanism of excited state population. The relatively high efficiency of biological light production (i.e., low efficiency of heat production) is responsible for the term “cold light” frequently used to describe bioluminescence.

Keywords

Energy Transfer Energy Transfer Process Cyclic Peroxide Bioluminescent Bacterium Bacterial Bioluminescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, W., 1975, Biological light, J. Chem. Ed. 52:138–145.Google Scholar
  2. Adam, W., 1977, The chemistry of 1,2-dioxetanes, Adv. Heterocyclic Chem. 21:437–481.Google Scholar
  3. Adam, W., and Liu, J. C., 1972, Cyclic Peroxides. XVI. α-peroxylactone synthesis and chemiluminescence, J. Am. Chem. Soc. 94:2894–2895.Google Scholar
  4. Adam, W., Cilento, G., Rodriguez, L. O., Rodriguez, O., Sarma, A. S., and Zinner, K., 1977, Acid dependent fluorescence quantum yield and tetramethyl-l,2-dioxetane chemi-energized fluorescence of ergostatetraenone, Photochem. Photobiol. 26:299–303.Google Scholar
  5. Airth, R. L., and McElroy, W. D., 1959, Light emission from extracts of luminous fungi, J. Bacteriol. 77:249–250.Google Scholar
  6. Airth, R. L., Foerster, G. E., and Behrens, P. Q., 1966, The luminous fungi, in: Bioluminescence in Progress (F. H. Johnson and Y. Haneda, eds.), pp. 203–223, Princeton University Press, Princeton, New Jersey.Google Scholar
  7. Airth, R., Foerster, G. E., and Hinde, R., 1970, Bioluminescence, in: Photobiology of Microorganisms (Per Halldal, ed.), pp. 479–494, Wiley-Interscience, New York.Google Scholar
  8. Allen, D. G., Blinks, J. R., and Prendergast, F. G., 1977, Aequorin luminescence: Relation of light emission to calcium concentration—a calcium-independent component, Science 195:996–998.Google Scholar
  9. Anderson, J. M., and Cormier, M. J., 1973, Lumisomes, the cellular site of bioluminescence in coelenterates, J. Biol. Chem. 248:2937–2943.Google Scholar
  10. Anderson, J. M., and Cormier, M. J., 1976, Transductive coupling in bioluminescence, Biochem. Biophys. Res. Commun. 68:1234–1241.Google Scholar
  11. Anderson, J. M., and Cormier, M. J., 1978, Sodium gradient dependent calcium transport in Renilla lumisomes, Biochem. Biophys. Res. Commun. 81:114–121.Google Scholar
  12. Anderson, J. M., Charbonneau, H., and Cormier, M. J., 1974, Mechanism of calcium induction of Renilla bioluminescence. Involvement of a calcium triggered luciferin binding protein, Biochemistry 13:1195–1201.Google Scholar
  13. Anderson, J. M., Hori, K.., and Cormier, M. J., 1978, A bioluminescence assay for PAP (3’, 5’-diphosphoadenosine) and PAPS (3’-phosphoadenylyl sulfate), in: Methods in Enzymology (M. DeLuca, ed.), pp. 244–257, Vol. 57, Academic Press, New York.Google Scholar
  14. Anderson, P. A. V., and Case, J. F., 1975, Electrical activity associated with luminescence and other colonial behavior in the pennatulid Renilla kollikeri, Biol. Bull. 149:80–95.Google Scholar
  15. Baldwin, T. O., Nicoli, M. Z., Becvar, J. E., and Hastings, J. W., 1975, Bacterial luciferase. Binding of oxidized flavin mononucleotide, J. Biol. Chem. 250:2763–2768.Google Scholar
  16. Barnes, A. T., Case, J. F., and Tsuji, F. I., 1973, Induction of bioluminescence in a luciferin deficient form of marine teleost, Porichthys, in response to exogenous luciferin, Comp. Biochem. Physiol. 47A:709–723.Google Scholar
  17. Bassot, J. M., 1966, On the comparative morphology of some luminous organs, in: Bioluminescence in Progress (F. H. Johnson and Y. Haneda, eds.), pp. 557–610, Princeton University Press, Princeton, New Jersey.Google Scholar
  18. Becker, R. S., 1969, Theory and Interpretation of Fluorescence and Phosphorescence, Wiley-Interscience, New York.Google Scholar
  19. Becvar, J. E., Tu, S.-C, and Hastings, 1978, The activity and stability of the luciferase-flavin intermediate, Biochemistry 17:1807–1812.Google Scholar
  20. Bellisario, R., Spencer, T. E., and Cormier, M. J., 1972, Isolation and properties of luciferase, a non-heme peroxidase from the bioluminescent earthworm, Diplocardia longa, Biochemistry 11:2256–2266.Google Scholar
  21. Berlman, I. B., 1973, Energy Transfer Parameters of Aromatic Compounds, Academic Press, New York.Google Scholar
  22. Biggley, W. H., Lloyd, J. E., and Seliger, H. H., 1967, The spectral distribution of firefly light. II, J. Gen. Physiol. 50:1681–1692.Google Scholar
  23. Blinks, J. R., 1978, Applications of calcium-sensitive photoproteins in experimental biology, Photochem. Photobiol. 27: 423–432. Google Scholar
  24. Blinks, J. R., Prendergast, F. H., and Allen, D. G., 1976, Photoproteins as biological calcium indicators, Pharmacol. Rev. 28:1–93.Google Scholar
  25. Brand, L., and Witholt, B., 1967, Fluorescence measurements, Methods Enzymol. 11:776–856.Google Scholar
  26. Buck, J., 1973, Bioluminescent behavior in Renilla. I. Colonial responses, Biol. Bull. Mar. Biol. Lab., Woods Hole 144:19–42.Google Scholar
  27. Charbonneau, H., and Cormier, M. J., 1979, Ca2+-induced bioluminescence in Renilla reniformis: Purification and characterization of a calcium-triggered luciferin binding protein, J. Biol. Chem. 254:769–780.Google Scholar
  28. Clayton, R. K., 1970, Light and Living Matter, Volume I: The Physical Part, McGraw-Hill, New York.Google Scholar
  29. Cline, T. W., and Hastings, J. W., 1974, Mutated luciferases with altered bioluminescence emission spectra, J. Biol. Chem. 249:4668–4669.Google Scholar
  30. Cormier, M. J., 1978, Comparative biochemistry of animal systems, in: Bioluminescence in Action (P. Herring, ed.), pp. 75–108, Academic Press, New York.Google Scholar
  31. Cormier, M. J., and Charbonneau, H., 1977, Isolation, properties, and function of a calcium-triggered luciferin binding protein, in: Calcium Binding Proteins and Calcium Function (R. H. Wasserman, R. A. Corradino, E. Carafoli, R. H. Kretsinger, D. H. MacLennan, and F. L. Siegel, eds.), pp. 481–490, Elsevier North Holland, Amsterdam.Google Scholar
  32. Cornier, M. J., and Strehler, B. L., 1953, The identification of KCF: requirement of long-chain aldehydes for bacterial extract luminescence, J. Am. Chem. Soc. 75:4864.Google Scholar
  33. Cormier, M. J., Crane, J. M., and Nakano, Y., 1967, Evidence for the identity of the luminous systems of Porichthys porosissimus (fish) and Cypridina hilgendorfii (crustacean), Biochem. Biophys. Res. Commun. 29:747–753.Google Scholar
  34. Cormier, M. J., Hori, K., and Karkhanis, Y. D., 1970, Studies on the bioluminescence of Renilla reniformis. VII. Conversion of luciferin into luciferyl sulfate by luciferin sulfoki-nase, Biochemistry 9:1184–1190.Google Scholar
  35. Cormier, M. J., Hori, K., Karkhanis, Y. D., Anderson, J. M., Wampler, J. E., Morin, J. G., and Hastings, J. W., 1973a, Evidence for similar biochemical requirements for bioluminescence among the coelenterates, J. Cell. Physiol. 81:291–297.Google Scholar
  36. Cormier, M. J., Wampler, J. E., and Hori, K., 1973, Bioluminescence: chemical aspects, Progr. Chem. Org. Natur. Prod. 30:1–54.Google Scholar
  37. Cormier, M. J., Hori, K., and Anderson, J. M., 1974, Bioluminescence in coelenterates, Biochim. Biophys. A eta 346:137–164.Google Scholar
  38. Cormier, M. J., Lee, J., and Wampler, J. E., 1975, Bioluminescence: recent advances, Ann. Rev. Biochem. 44:255–272.Google Scholar
  39. Cormier, M. J., Ward, W. W., and Charbonneau, H., 1977, Role of oxygen in coelenterate bioluminescence: Evidence for enzyme-substrate, oxygen-containing intermediates, in: Superoxide and Superoxide Dismutases (A. M. Michelson, J. M. McCord, and I. Fridovich, eds.), pp. 451–458, Academic Press, New York.Google Scholar
  40. Crosby, G. A., El-Sayed, M. A., Rhodes, W. C., and Saltiel, J. (eds.), 1976, Michael Kasha Symposium: Electronic Processes and Energy Transfer in Organic, Inorganic, and Biological Systems, J. Phys. Chem. 80:2143–2312 (an entire issue devoted to energy transfer).Google Scholar
  41. Davenport, D., and Nicol, J. A. C., 1955, Luminescence in hydromedusae, Proc. Roy. Soc., B. 144:399–411.Google Scholar
  42. DeLuca, M., 1976, Firefly luciferase, Adv. Enzymol. 44:37–68.Google Scholar
  43. DeLuca, M., and Dempsey, M. E., 1970, Mechanism of oxidation in firefly luminescence, Biochem. Biophys. Res. Commun. 40:117–122.Google Scholar
  44. DeLuca, M., and Dempsey, M. E., 1973, Mechanism of bioluminescence and che-miluminescence elucidated by use of oxygen-18, in: Chemiluminescence and Bio-luminescence (M. J. Cormier, D. M. Hercules, and J. Lee, eds.), pp. 345–359, Plenum Press, New York.Google Scholar
  45. DeLuca, M., Dempsey, M., Hori, K., Wampler, J. E., and Cormier, M. J., 1971, Mechanism of oxidative C02 production during Renilla reniformis bioluminescence, Proc. Nat. Acad. Sci. USA 68:1658–1660.Google Scholar
  46. DeLuca, M., Dempsey, M. E., Hori, K., and Cormier, M. J., 1976, Source of oxygen in the CO2 produced during chemiluminescence of firefly luciferyl-adenylate and Renilla luciferin, Biochem. Biophys. Res. Commun. 69:262–267.Google Scholar
  47. Dubois, R., 1885, Fonction photogénique des Pyrophores, C. R. Soc. Biol. 37:559–562.Google Scholar
  48. Dubois, R., 1887, Note sur la fonction photogénique chez les Pholades, C. R. Soc. Biol. 39:564–566.Google Scholar
  49. Eley, M., Lee, J., Lhoste, J-M., Lee, C. Y., Cormier, M. J., and Hemmerich, P., 1970, Bacterial bioluminescence. Comparisons of bioluminescence emission spectra, the fluorescence of luciferase reaction mixtures, and the fluorescence of flavin cations, Biochemistry 9:2902–2908.Google Scholar
  50. Endo, M., Kajiwara, M., and Nakanishi, K., 1970, Fluorescent constituents and cultivation of Lampteromycesjaponicus,J. Chem. Soc. Chem. Commun. 1970:309–310.Google Scholar
  51. Fogel, M., and Hastings, J. W., 1971, A substrate-binding protein in the Gonyaulax bioluminescence reaction, Arch. Biochem. Biophys. 142:310–321.Google Scholar
  52. Förster, T., 1959, Transfer mechanisms of electronic excitation, Dis. Faraday Soc. 27:7–19.Google Scholar
  53. Freeman, G., and Reynolds, G. T., 1973, The development of bioluminescence in the ctenophore Mnemiopsis leidyi. Develop. Biol. 31:61–100.Google Scholar
  54. Friedland, J., and Hastings, J. W., 1967, The reversibility of the denaturation of bacterial luciferase, Biochemistry 6:2893–2900.Google Scholar
  55. Gast, R., and Lee, J., 1976, Isolation of the emitter in bacterial bioluminescence, Int. Congress on Photobiol., Abst., p. 324, Rome.Google Scholar
  56. Gast, R., and Lee, J., 1978, Isolation of the in vivo emitter in bacterial bioluminescence, Proc. Nat. Acad. Sci. USA 75:833–837.Google Scholar
  57. Gast, R., Neering, I. R., and Lee, J., 1978, Separation of a blue fluorescence protein from bacterial luciferase, Biochem. Biophys. Res. Commun. 80:14–21.Google Scholar
  58. Gundermann, K-D., 1973, Chemiluminescence of diazaquinones and related compounds, in: Chemiluminescence and Bioluminescence (M. J. Cormier, D. M. Hercules, and J. Lee, eds.), pp. 209–229, Plenum Press, New York.Google Scholar
  59. Gunsalus-Miguel, A., Meighen, E. A., Nicoli, M. Z., Nealson, K. H., and Hastings, J. W., 1972, Purification and properties of bacterial luciferases, J. Biol. Chem. 247:398–404.Google Scholar
  60. Hart, R. C., Boyer, P. D., DeLuca, M., and Cormier, M. J., 1977a, The mechanisms of oxidative decarboxylation of Renilla reniformis luciferin during light emission, Am. Soc. Photobiol., Abst., p. 76, 5th annual meeting, San Juan.Google Scholar
  61. Hart, R. C., Matthews, J. C., Hori, K., and Cormier, M. J., 1977b, Renilla reniformis bioluminescence. Effects of luciferin analogues on excited state formation, Am. Soc. Photobiol., Abst., p. 76, 5th annual meeting, San Juan.Google Scholar
  62. Hart, R. C., Stempel, K. E., Boyer, P. D., and Cormier, M. J., 1978a, Mechanism of the enzyme-catalyzed bioluminescent oxidation of coelenterate-type luciferin, Biochem. Biophys. Res. Commun. 81:980–986.Google Scholar
  63. Hart, R. C., Stempel, K. E., Boyer, P. D., and Cormier, M. J., 19786, The mechanism of the bioluminescent oxidation of coelenterate-type luciferin, Am. Soc. Photobiol., Abst., p. 54, 6th annual meeting, Burlington, Vermont.Google Scholar
  64. Harvey, E. N., 1925, Studies on bioluminescence. XVII. Fluorescence and inhibition of luminescence in ctenophores by ultra-violet light, J. Gen. Physiol. 7:331–339.Google Scholar
  65. Harvey, E. N., 1952, Bioluminescence, Academic Press, New York.Google Scholar
  66. Harvey, E. N., and Tsuji, F. I., 1954, Luminescence of Cypridina luciferin without luciferase together with an appraisal of the term luciferin, J. Cell. Comp. Physiol. 44:63–76.Google Scholar
  67. Hastings, J. W., 1978, The chemistry and biology of bacterial light emission, Photochem. Photobiol. 27:397–404.Google Scholar
  68. Hastings, J. W., and Gibson, Q. H., 1963, Intermediates in the bioluminescent oxidation of reduced flavin mononucleotide, J. Biol. Chem. 238:2537–2554.Google Scholar
  69. Hastings, J. W., and Nealson, K. H., 1977, Bacterial bioluminescence, Ann. Rev. Microbiol. 31:549–595.Google Scholar
  70. Hastings, J. W., and Wilson, T., 1976, Bioluminescence and chemiluminescence, Photochem. Photobiol. 23:461–473.Google Scholar
  71. Hastings, J. W., Weber, K., Friedland, J., Eberhard, A., Mitchell, G. W., and Gunsalus, A., 1969, Structurally distinct bacterial luciferases, Biochemistry 8:4681–4689.Google Scholar
  72. Hastings, J. W., Balny, C., LePeugh, C., and Douzou, P., 1973, Spectral properties of an oxgenated luciferase-flavin intermediate isolated by low-temperature chromatography, Proc. Natl. Acad. Sci. USA 70:3468–3472.Google Scholar
  73. Hendrie, M. S., Hodgkiss, W., and Shewan, J. M., 1970, The identification, and classification of luminous bacteria, J. Gen. Microbiol. 64:151–169.Google Scholar
  74. Henry, J. P., 1975, Control of the Ca2+-dependent luminescence of lumisomes by monovalent cations, Biochem. Biophys. Res. Commun. 62:253–259.Google Scholar
  75. Henry, J. P., and Michelson, A. M., 1978, Bioluminescence, Photochem. Photobiol. 27:855–858.Google Scholar
  76. Henry, J. P., and Monny, C., 1977, Protein-protein interactions in the Pholas dactylus system of bioluminescence, Biochemistry 16:2517–2525.Google Scholar
  77. Henry, J. P., Isambert, M. F., and Michelson, A. M., 1970, Studies in bioluminescence III. The Pholas dactylus system, Biochim. Biophys. Acta. 205:437–450.Google Scholar
  78. Henry, J. P., Monny, C., and Michelson, A. M., 1975, Characterization and properties of Pholas luciferase as a metalloglycoprotein, Biochemistry 14:3458–3466.Google Scholar
  79. Herring, P. J., 1972, Bioluminescence of searsid fishes, J. Mar. Biol. Ass. U. K. 52:879–887.Google Scholar
  80. Hopkins, T. A., Seliger, H. H., White, E. H., and Cass, M. W., 1967, The chemiluminescence of firefly luciferin. A model for the bioluminescent reaction and identification of the product excited state, J. Am. Chem. Soc. 89:7148–7150.Google Scholar
  81. Hori, K., Nakano, Y., and Cormier, M. J., 1972, Studies on the bioluminescence of Renilla reniformis XI. Location of the sulfate group in luciferyl sulfate, Biochim. Biophys. Acta 256:638–644.Google Scholar
  82. Hori, K., Wampler, J. E., Matthews, J. C., and Cormier, M. J., 1973, Identification of the product excited states during the chemiluminescent and bioluminescent oxidation of Renilla (sea pansy) luciferin and certain of its analogs, Biochemistry 12:4463–4469.Google Scholar
  83. Hori, K., Anderson, J. M., Ward, W. W., and Cormier, M. J., 1975, Renilla luciferin as the substrate for calcium-induced photoprotein bioluminescence. Assignment of luciferin tautomers in aequorin and mnemiopsin, Biochemistry 14:2371–2376.Google Scholar
  84. Hori, K., Charbonneau, H., Hart, R. C., and Cormier, M. J., 1977, Structure of native Renilla reniformis luciferin, Proc. Nat. Acad. Sci. USA 74:4285–4287.Google Scholar
  85. Inoue, S., Okada, K., Kakoi, H., and Goto, T., 1977, Fish bioluminescence I. Isolation of a luminescent substance from a myctophina fish, Neoscopelus microchir, and identification of it as Oplophorus luciferin, Chemistry Lett. 1977:257–258.Google Scholar
  86. Johnson, F. H., and Shimomura, O., 1975, Bacterial and other “luciferins,” BioScience 25:718–722.Google Scholar
  87. Johnson, F. H., and Shimomura, O., 1976, Bioluminescence—the biochemistry of photogens and photogogika, TIBS 1976:250–253.Google Scholar
  88. Johnson, F. H., Haneda, Y., and Sie, E. H-C, 1960, An interphylum luciferin-luciferase reaction. Science 132:422–423.Google Scholar
  89. Johnson, F. H., Sugiyama, N., Shimomura, O., Saiga, Y., and Haneda, Y., 1961, Crystalline luciferin from a luminescent fish, Parapriacanthus beryciformes, Proc. Nat. Acad. Sci. USA 47:486–489.Google Scholar
  90. Johnson, F. H., Shimomura, O., Saiga, Y., Gershman, L. C., Reynolds, G. T., and Waters, J. R., 1962, Quantum efficiency of Cypridina luminescence with a note on that of Aequorea, J. Cell. Comp. Physiol. 60:85–103.Google Scholar
  91. Karkhanis, Y. D., and Cormier, M. J., 1971, Isolation and properties of Renilla reniformis luciferase, a low molecular weight energy conversion enzyme, Biochemistry 10:317–326.Google Scholar
  92. Koka, P., and Lee, J., 1978, Separation and spectral properties of the chromophore of blue fluorescence protein isolated from bioluminescent bacteria, Am. Soc. Photobiol., Abst., p. 55, 6th annual meeting, Burlington, Vermont.Google Scholar
  93. Koo, J-Y., Schmidt, S. P., and Schuster, G. B., 1978, Bioluminescence of the firefly: Key steps in the formation of the electronically excited state for model systems, Proc. Nat. Acad. Sci. USA 75:30–33.Google Scholar
  94. Kopecky, K. R., and Mumford, C., 1969, Luminescence in the thermal decomposition of 3,3,4-trimethyl-1,2-dioxetane, Can. J. Chem. 47:709–711.Google Scholar
  95. Kuwabara, S., and Wassink, E. C., 1966, Purification and properties of the active substance of fungal luminescence, in: Bioluminescence in Progress (F. H. Johnson and Y. Haneda, eds.), pp. 233–245, Princeton University Press, Princeton, New Jersey.Google Scholar
  96. Lamola, A. A., 1969, Electronic energy transfer in solution: Theory and applications, in: Technique of Organic Chemistry Vol. 14 (P. A. Leermakers and A. Weissberger, eds.), pp. 17–126, Wiley-Interscience, New York.Google Scholar
  97. Lamola, A. A., and Turro, N. J., 1977, Spectroscopy, in: The Science of Photobiology (K. C. Smith, ed.), pp. 27–61, Plenum Press, New York.Google Scholar
  98. Lee, J., 1974, Bioluminescence, Photochem. Photobiol. 20:535–539.Google Scholar
  99. Lee, J., 1977, Bioluminescence, in: The Science of Photobiology (K. C. Smith, ed.), pp. 371–395, Plenum Press, New York.Google Scholar
  100. Lee, J., and Koka, P., 1978, The purification of a blue fluorescence protein from the bioluminescent bacterium Photobacterium phosphoreum, in: Methods in Enzymology, Vol. 57 (M. DeLuca, ed.), pp. 226–234, Academic Press, New York.Google Scholar
  101. Lee, J., and Murphy, C. L., 1973a, Effects of aldehyde carbon chain length and type of luciferase on the quantum yields of bacterial bioluminescence, in: Chemiluminescence and Bioluminescence (M. J. Cormier, D. M. Hercules, and J. Lee, eds.), pp. 381–386, Plenum Press, New York.Google Scholar
  102. Lee, J., and Murphy, C. L., 1976, Bacterial bioluminescence: Absorption and fluorescence characteristics and composition of reaction products of reduced flavin mononucleotide with luciferase and oxygen, Biochem. Biophys. Res. Commun. 53:157–163.Google Scholar
  103. Lloyd, J. E., 1971, Bioluminescent communication in insects, Ann. Rev. Entomol. 16:97–122.Google Scholar
  104. Matthews, J. C., Hori, K., and Cormier, M. J., 1977a Purification and properties of Renilla reniformis luciferase, Biochemistry 16:85–91.Google Scholar
  105. Matthews, J. C., Hori, K., and Cormier, M. J., 1977b, Chemical modification studies on Renilla luciferase, Am. Soc. Photobiol., Abst., p. 75, 5th annual meeting, San Juan.Google Scholar
  106. Matthews, J. C., Hori, K., and Cormier, M. J., 1978, Substrate and substrate analogue binding properties of Renilla luciferase, Biochemistry 16:5217–5220.Google Scholar
  107. McCann, R. O., Hart, R. C., and Cormier, M. J., 1978, Active center comparisons of aequorin and Renilla luciferase by use of luciferin analogues, Am. Soc. Photobiol., Abst., p. 54, 6th annual meeting, Burlington, Vermont.Google Scholar
  108. McCapra, F., 1968, An application of theory of electrocyclic reactions to bioluminescence, J. Chem. Soc. Chem. Commun. 1968:155–156.Google Scholar
  109. McCapra, F., 1973, The chemistry of bioluminescence, Endeavour 32:139–145.Google Scholar
  110. McCapra, F., 1977, Alternative mechanism for dioxetan decomposition, J. Chem. Soc. Chem. Commun. 1977:946–948.Google Scholar
  111. McCapra, F., and Richardson, D. G., 1964, Mechanism of chemiluminescence. New che- miluminescent reaction, Tetrahedron Lett. 1964:3167.Google Scholar
  112. McCapra, F. and Roth, M., 1972, Cyclization of a dehydropeptide: A model for Cypridina luciferin biosynthesis, J. Chem. Soc. Chem. Commun. 1972 :894–895.Google Scholar
  113. McCapra, F., Beheshti, I., Burford, A., Hann, R. A., and Zaklika, K. A., 1977, Singlet excited states from dioxetan decomposition, J. Chem. Soc. Chem. Commun. 1977:944–946.Google Scholar
  114. McElroy, W. D., 1947, The energy source for bioluminescence in an isolated system, Proc. Nat. Acad. Sci. USA. 33:342–345.Google Scholar
  115. McElroy, W. D., and Seliger, H. H., 1963, The chemistry of light emission, Adv. Enzymol. 25:119–166.Google Scholar
  116. McElroy, W. D., Seliger, H. H., and DeLuca, M., 1965, Enzyme catalysis and color of light in bioluminescent reactions, in: Evolving Genes and Proteins (V. Bryson and H. J. Vogel, eds.), pp. 319–340, Academic Press, New York.Google Scholar
  117. McElroy, W. D., DeLuca, M., and Travis, J., 1967, Molecular uniformity in biological catalyses, Science 157:150–160.Google Scholar
  118. McElroy, W. D., Seliger, H. H., and White, E. H., 1969, Mechanism of bioluminescence, chemiluminescence, and enzyme function in the oxidation of firefly luciferin, Photochem. Photobiol. 10:153–170.Google Scholar
  119. McGlynn, S. P., Azumi, T., and Kinoshita, M., 1969, Molecular Spectroscopy of the Triplet State, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  120. Morin, J. G., 1974, Coelenterate bioluminescence, in: Coelenterate Biology (L. Muscatine and H. Lenhoff, eds.), pp. 397–438, Academic Press, New York.Google Scholar
  121. Morin, J. G., and Hastings, J. W., 1971a, Biochemistry of the bioluminescence of colonial hydroids and other coelenterates, J. Cell. Physiol. 77:305–312.Google Scholar
  122. Morin, J. G., and Hastings, J. W., 1971b, Energy transfer in a bioluminescent system, J. Cell Physiol. 77:313–318.Google Scholar
  123. Morin, J. G., and Reynolds, G. T., 1970, Luminescence and related fluorescence in coelenterates, Biol. Bull. Mar. Biol. Lab., Woods Hole 139:430–431.Google Scholar
  124. Morin, J. G., Harrington, A., Krieger, N., Nealson, K. H., Baldwin, T. O., and Hastings, J. W., 1975, Light for all reasons, Science 190:74–76.Google Scholar
  125. Morise, H., Shimomura, O., Johnson, F. H., and Winant, J., 1974, Intermolecular energy transfer in the bioluminescent system of A equorea, Biochemistry 13:2656–2662.Google Scholar
  126. Murphy, C. L., Faini, G., and Lee, J., 1974, Separation of the apoprotein and reconstitution of the holoprotein from the long-lived intermediate in bacterial bioluminescence, Biochem. Biophys. Res. Commun. 58:119–125.Google Scholar
  127. Nealson, K., Piatt, T., and Hastings, J. W., 1970, Cellular control of the synthesis and activity of the bacterial luminescent system, J. Bacteriol. 104:313–322.Google Scholar
  128. Nicol, J. A. C., 1955, Nervous regulation of luminescence in the sea pansy, Renilla kollikeri, J. Exp. Biol. 32:619–635.Google Scholar
  129. Ohtsuka, H., Rudie, N. G., and Wampler, J. E., 1976, Structural identification and synthesis of luciferin from the bioluminescent earthworm, Diplocardia longa, Biochemistry 15:1001–1004.Google Scholar
  130. Poinar, G. O., 1978, Two scientists see the light, BioScience 28(6):412.Google Scholar
  131. Reichelt, J. L., and Baumann, P., 1973, Taxonomy of the marine, luminous bacteria, Arch. Mikrobiol. 94:283–330.Google Scholar
  132. Reichelt, J. L., Baumann, P., and Baumann, L., 1976, Study of genetic relationships among marine species of the genera Beneckea and Photobacterium by means of in vitro DNA/DNA hybridization, Arch. Microbiol. 110:101–120.Google Scholar
  133. Reynolds, G. T., 1972, Image intensification applied to biological problems, Quart. Rev. Biophys. 5:295–347.Google Scholar
  134. Reynolds, G. T., 1978, Application of photosensitive devices to bioluminescence studies, Photochem. Photobiol. 27:405–421.Google Scholar
  135. Ruby, E. G., and Nealson, K. H., 1977, A luminous bacterium that emits yellow light, Science 196:432–434.Google Scholar
  136. Rudie, N. G., and Wampler, J. E., 1978, Characterization of the luminescent cell from Diplocardia longa, Comp. Biochem. Physiol. 59A:1–8.Google Scholar
  137. Seliger, H. H., 1975, Origin of bioluminescence, Photochem. Photobiol. 21:335–361.Google Scholar
  138. Seliger, H. H., and Hamman, J. P., 1977, A new type of adventitious biological chemiluminescence, Am. Soc. Photobiol. Abst., p. 79, 5th annual meeting, San Juan.Google Scholar
  139. Seliger, H. H., and McElroy, W. D., 1960, Spectral emission and quantum yield of firefly bioluminescence, Arch. Biochem. Biophys. 88:136–141.Google Scholar
  140. Seliger, H. H., and McElroy, W. D., 1964, The colors of firefly bioluminescence: Enzyme configuration and species specificity, Proc. Nat. Acad. Sci. USA 52:75–81.Google Scholar
  141. Seliger, H. H., and McElroy, W. D., 1965, Light: Physical and Biological Action, Academic Press, New York.Google Scholar
  142. Seliger, H. H., and Morton, R. A., 1968, A physical approach to bioluminescence, in: Photophysiology, Vol. 4 (A. C. Giese, ed.), pp. 253–314, Academic Press, New York.Google Scholar
  143. Shimomura, O., and Johnson, F. H., 1966, Partial purification of the Chaetopterus luminescence system, in: Bioluminescence in Progress (F. H. Johnson and Y. Haneda, eds.), pp. 495–521, Princeton University Press, Princeton, New Jersey.Google Scholar
  144. Shimomura, O., and Johnson, F. H., 1967, Extraction, purification, and properties of the bioluminescence system of the euphausid shrimp Meganyctiphanes norvegica, Biochemistry 6:2293–2306.Google Scholar
  145. Shimomura, O., and Johnson, F. H., 1968a, The structure of Latia luciferin, Biochemistry 7:1734–1738.Google Scholar
  146. Shimomura, O., and Johnson, F. H., 19686, Purification and properties of the luciferase and of a protein cofactor in the bioluminescence system of Latia neritoides, Biochemistry 7:2574–2580.Google Scholar
  147. Shimomura, O., and Johnson, F. H. 1968c, Light-emitting molecule in a new photoprotein type of luminescence system from the euphausid shrimp Meganyctiphanes norvegica, Proc. Nat. Acad. Sci. USA 59:475–477.Google Scholar
  148. Shimomura, O., and Johnson, F. H., 1969, Properties of the bioluminescent protein aequorin, Biochemistry 8:3991–3997.Google Scholar
  149. Shimomura, O., and Johnson, F. H., 1970, Calcium binding, quantum yield, and emitting molecule in aequorin bioluminescence, Nature 227:1356–1357.Google Scholar
  150. Shimomura, O., and Johnson, F. H., 1971, Mechanism of the luminescent oxidation of Cyp-ridina luciferin, Biochem. Biophys. Res. Commun. 44:340–346.Google Scholar
  151. Shimomura, O., and Johnson, F. H., 1973, Mechanism of the luminescent oxidation of Cyp-ridina luciferin, in: Chemiluminescence and Bioluminescence (M. J. Cormier, D. M. Hercules, and J. Lee, eds.), pp. 337–344, Plenum Press, New York.Google Scholar
  152. Shimomura, O., and Johnson, F. H., 1975a, Chemical nature of bioluminescence systems in coelenterates, Proc. Nat. Acad. Sci. USA 72:1546–1549.Google Scholar
  153. Shimomura, O., and Johnson, F. H., 1975b, Regeneration of the photoprotein aequorin, Nature 256:236–238.Google Scholar
  154. Shimomura, O., Johnson, F. H., and Saiga, Y., 1962, Extraction, purification, and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea, J. Cell. Comp. Physiol. 59:223–240.Google Scholar
  155. Shimomura, O., Johnson, F. H., and Saiga, Y., 1963, Further data on the bioluminescent protein aequorin, J. Cell. Comp. Physiol. 62:1–8.Google Scholar
  156. Shimomura, O., Johnson, F. H., and Haneda, Y., 1966, Isolation of the luciferin of the New Zealand fresh-water limpet, Latia neritoides Gray, in: Bioluminescence in Progress (F. H. Johnson and Y. Haneda, eds.), pp. 391–404, Princeton University Press, Princeton, New Jersey.Google Scholar
  157. Shimomura, O., Johnson, F. H., and Kohama, Y., 1972, Reactions involved in bio-luminescence systems of limpet (Latia neritoides) and luminous bacteria, Proc. Nat. Acad. Sci. USA 69:2086–2089.Google Scholar
  158. Shimomura, O., Masugi, T., Johnson, F. H., and Haneda, Y., 1978, Properties and reaction mechanism of the bioluminescence system of the deep-sea shrimp Oplophorus gracilorostris, Biochemistry 17:994–998.Google Scholar
  159. Terpstra, W., 1962, Evidence for the presence of an unknown factor, active in the light reaction, in preparations of Photobacterium phosphoreum, Biochim. Biophys. Acta 60: 580–590.Google Scholar
  160. Totter, J. R., 1966, Chemical events leading to chemiluminescence of lucigenine and luminol, in: Bioluminescence in Progress (F. H. Johnson and Y. Haneda, eds.), pp. 23–33, Princeton University Press, Princeton, New Jersey.Google Scholar
  161. Tsuji, F. I., and Haneda, Y., 1971, Luminescent system in a myctophid fish, Diaphus elucens Brauer, Nature 233:623–624.Google Scholar
  162. Tsuji, F. I., Barnes, A. T., and Case, J. F., 1972, Bioluminescence in the marine teleost, Porichthys no ta tus, and its induction in a non-luminous form by Cypridina luciferin, Nature 237:515–516.Google Scholar
  163. Tu, S-C, Wu, C-W., and Hastings, J. W., 1978, Structural studies on bacterial luciferase using fluorescence energy transfer and emission anisotropy, Biochemistry 17:987–993.Google Scholar
  164. Turro, N. J., and Lamola, A. A., 1977, Photochemistry, in: The Science of Photobiology (K. C. Smith, ed.), pp. 63–68, Plenum Press, New York.Google Scholar
  165. Udenfriend, S., 1962, Fluorescence Assay in Biology and Medicine, Academic Press, New York.Google Scholar
  166. Warnpier, J. E., 1975, Simple photometer circuits using modular electronic components, in: Analytical Applications of Bioluminescence and Chemiluminescence (E. W. Chappelle and G. L. Picciolo, eds.), pp. 105–114, N. A. S. A. Pub. No. SP-388.Google Scholar
  167. Wampler, J. E., 1978, Measurements and physical characteristics of luminescence, in: Bioluminescence in Action (P. Herring, ed.), pp. 1–48, Academic Press, New York.Google Scholar
  168. Wampler, J. E., Hori, K., Lee, J., and Cormier, M. J., 1971, Structured bioluminescence. Two emitters during both the the in vitro and the in vivo bioluminescence of Renilla, Biochemistry 10:2903–2910.Google Scholar
  169. Wampler, J. E., Karkhanis, Y. D., Hori, K., and Cormier, M. J., 1972, Two emitters during Renilla bioluminescence: An energy conversion process catalyzed by a low molecular weight protein, Fed. Proc. 31:419.Google Scholar
  170. Wampler, J. E., Karkhanis, Y. D., Morin, J. G., and Cormier, M. J., 1973, Similarities in the bioluminescence from the Pennantulacea, Biochim. Biophys. Acta 314:104–109.Google Scholar
  171. Wannlund, J., DeLuca, M., Stempel, K., and Boyer, P. D., 1978, Use of 14C-carboxyl-luciferin in determining the mechanism of the firefly luciferase catalyzed reactions, Biochem. Biophys. Res. Commun. 81:987–992.Google Scholar
  172. Ward, W. W., 1968, Studies of the fluorescent compounds associated with bioluminescence in Ctenophora, Masters Thesis, University of Florida, Gainesville, Florida.Google Scholar
  173. Ward, W. W., 1978, Spectrophotometric comparison of the energy transfer chromophores in coelenterate bioluminescence, Am. Soc. Photobiol. Poster 4, 6th annual meeting, Burlington, Vermont.Google Scholar
  174. Ward, W. W., and Cormier, M. J., 1975, Extraction of Renilla-typc luciferin from the calcium-activated photoproteins aequorin, mnemiopsin, and berovin, Proc. Nat. Acad. Sci. USA 72:2530–2534.Google Scholar
  175. Ward, W. W. and Cormier, M. J., 1976a, In vitro energy transfer in Renilla bioluminescence: Involvement of the green-flu orescent protein, Am. Soc. Photobiol., Abst., p. 121, 4th annual meeting, Denver, Colorado.Google Scholar
  176. Ward, W. W., and Cormier, M. J., 1976b, In vitro energy transfer in Renilla bioluminescence, J. Phys. Chem. 80:2289–2291.Google Scholar
  177. Ward, W. W., and Cormier, M. J., 1978a, Energy transfer via protein-protein interaction in Renilla bioluminescence, Photochem. Photobiol. 27:389–396.Google Scholar
  178. Ward, W. W., and Cormier, M. J., 1978b, Protein-protein interactions as measured by bioluminescence energy transfer in Renilla, in: Methods in Enzymology, Vol. 57 (M. DeLuca, vol. ed.), pp. 257–267, Academic Press, New York.Google Scholar
  179. Ward, W. W., and Cormier, M. J., 1979, An energy transfer protein in coelenterate bioluminescence: Characterization of the Renilla green-fluorescent protein (GFP), J. Biol. Chem. 254:781–788.Google Scholar
  180. Ward, W. W., and Seliger, H. H., 1974a, Extraction and purification of calcium-activated photoproteins from the ctenophores Mnemiopsis sp. and Beroe ovata, Biochemistry 13:1491–1499.Google Scholar
  181. Ward, W. W., and Seliger, H. H., 1974c, Properties of mnemiopsin and berovin, calcium-activated photoproteins from the ctenophores Mnemiopsis sp. and Beroë ovata, Biochemistry 13:1500–1509.Google Scholar
  182. Ward, W. W., and Seliger, H. H., 1976, Action spectrum and quantum yield for the photoinac-tivation of mnemiopsin, a bioluminescent photoprotein from the ctenophore, Mnemiopsis sp., Photochem. Photobiol. 23:351–363.Google Scholar
  183. Weber, K., and Osborn, M., 1969, The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis, J. Biol. Chem. 224:4406–4412.Google Scholar
  184. White, E. H., and Brundrett, R. B., 1973, The chemiluminescence of acyl hydrazides, in: Che-miluminescence and Bioluminescence (M. J. Cormier, D. M. Hercules, and J. Lee, eds.), pp. 231–244, Plenum Press, New York.Google Scholar
  185. White, E. H., and Harding, M. J. C., 1964, The chemiluminescence of lophine and its derivatives, J. Am. Chem. Soc. 86:5686–5687.Google Scholar
  186. White, E. H., and Harding, M. J. C., 1965, Chemiluminescence in liquid solutions. Chemiluminescence of lopine and its derivatives, Photochem. Photobiol. 4:1129–1155.Google Scholar
  187. White, E. H., McCapra, F., Field, G. F., and McElroy, W. D., 1961, The structure and synthesis of firefly luciferin, J. Am. Chem. Soc. 83:2402–2403.Google Scholar
  188. White, E. H., Miano, J. D., and Umbreit, M., 1975, On the mechanism of firefly luciferin luminescence, J. Am. Chem. Soc. 97:198–200.Google Scholar
  189. Wilson, T., 1976, Chemiluminescence in the liquid phase: Thermal cleavage of dioxetanes, Int. Rev. Sci., Phys. Chem. Ser. 2, 9:265–327.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • William W. Ward
    • 1
  1. 1.Department of Biochemistry and Microbiology, Cook CollegeRutgers UniversityNew BrunswickUSA

Personalised recommendations