Nuclear Field Theory Treatment of the Interacting Boson Model

  • D. R. Bes
  • R. A. Broglia
Part of the Ettore Majorana International Science Series book series (EMISS)


A microscopic description of the interacting boson model is attempted in a basis of multipole pairing vibrations and in the framework of the nuclear field theory. If nothing else, it seems in this way possible to calculate both rotations and vibrations in a common basis.


Pauli Principle Pairing Boson Reduce Matrix Element Interact Boson Model Niels Bohr Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cf. e.g. A. Bohr and B. R. Mottelson, Nuclear Structure, Vols. I and II, Benjamin (1969) and (1975).Google Scholar
  2. 2.
    Cf. e.g. P. F. Bortignon, R. A. Broglia, D. R. Bes, and R. Liotta, Phys. Rep. 30C:305 (1977), and references therein.ADSCrossRefGoogle Scholar
  3. 3.
    P. F. Bortignon, R. A. Broglia, and D. R. Bes, Phys. Lett. 76B:153 (1978).ADSGoogle Scholar
  4. 4.
    A. Arima and F. lachello, Phys. Rev. Lett. 40:385 (1978), and references therein.ADSCrossRefGoogle Scholar
  5. 5.
    A. Arima, T. Otsuka, F. lachello, and I. Talmi, Phys. Lett. 66B:205 (1977).ADSGoogle Scholar
  6. 6.
    O. Scholten, F. lachello, and A. Arima, Interacting boson model of collective nuclear states III, preprint KVI-126, February 1978 and references therein.Google Scholar
  7. 7.
    D. R. Bes and R. A. Broglia, Phys. Rev. C3:2349 (1971).ADSGoogle Scholar
  8. 8.
    R. A. Broglia, D. R. Bes, and B. Nilsson, Phys. Lett. 50B:213 (1974).ADSGoogle Scholar
  9. 9.
    R. A. Broglia and D. R. Bes, Phys. Lett. 69B:129 (1977).ADSGoogle Scholar
  10. 10.
    It has been shown8 that Gλ≃27/A MeV, independent of the multipolarity and for fλ(r)=1. It is thus not evident that only the lowest multipolarities are important. However, following ref. 4 we restrict the present discussion to λ=0 and λ=2.Google Scholar
  11. 11.
    The expansion parameter in the NFT is 1/Ω, Ω being the effective pair-degeneracy of the valence single-particle orbitals. In the case of a j-shell, Ω=j+1/2.Google Scholar
  12. 12.
    B. Bayman and A. Lande, Nucl. Phys. 77:1 (1966); T. Kishimoto and T. Tamura, A163:100 (1971).CrossRefGoogle Scholar
  13. 13.
    G. Racah, Phys. Rev. 63:367 (1943).ADSCrossRefGoogle Scholar
  14. 14.
    It may be instructive to compare the Pauli correcting factors given in equations (6) and (7) of ref. 15 with those appearing, e.g. in (7). The factor [ 1-(ns-1)/Ω]1/2 corresponds to the first order term in the expansion of [ (2Ω+2-2ns-4nd)/(2Ω+2-4nd)]1/2 in powers of 1/Ω. The term (l-nd/Ω)1/2, which is absent from eq. (7) of ref. 15, is however contained in the reduced matrix element appearing in eq. (6) of the same reference.Google Scholar
  15. 15.
    A. Arima, T. Otsuka, F. Iachello, and I. Talmi, Phys. Lett. 76B:139 (1978).ADSGoogle Scholar
  16. 16.
    R. A. Broglia, V. Paar, and D. R. Bes, Phys. Lett. 37B:257 (1971).ADSGoogle Scholar
  17. D. R. Bes, R. A. Broglia, and B. Nilsson, Phys. Rep. 16C:1 (1975).ADSCrossRefGoogle Scholar
  18. 17.
    D. R. Bes, G. G. Dussel, and H. Sofia, Am. Journal of Phys. 45:191 (1977).ADSCrossRefGoogle Scholar
  19. 18.
    O. Civitarese, R. A. Broglia, and D. R. Bes, Phys. Lett. 72B:45 (1977).ADSGoogle Scholar
  20. 19.
    S. G. Nilsson, Mat. Fys. Medd. Dan. Vid. Selsk. 29:no.16 (1955).Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • D. R. Bes
    • 1
  • R. A. Broglia
    • 1
  1. 1.Department of PhysicsState University of New YorkStony BrookUSA

Personalised recommendations