Preparation and Characterization of Clean Mineral Surfaces

  • P. Somasundaran
  • Brij M. Moudgil


Surface chemical properties of minerals are known to be strongly influenced by the surface heterogeneities which arise from either natural variations in the chemical composition and crystal structure of the mineral or pretreatments given during sample preparation. Large discrepancies are often found in the values reported for the surface properties of the same mineral. These variations mostly occur due to different sample preparation techniques employed by investigators and sometimes, due to impurities present in the liquid or gas phase with which the mineral particles are contacted. To elucidate the mechanisms underlying the various interfacial processes it is essential to avoid the artifacts introduced by sample preparation techniques. An understanding of the effects of pretreatments on the surface properties of the minerals can be helpful in this regard in obtaining consistent and reproducible results. In this paper commonly used pretreatments for obtaining clean mineral surfaces and their implications in the study of interfacial phenomena are discussed.


Zeta Potential Isoelectric Point Colloid Interface Interfacial Property Mineral Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.J. Modi and D.W. Fuerstenau, J. Phys. Chem., 61, 640 (1957).CrossRefGoogle Scholar
  2. 2.
    P. Somasundaran and R.D. Kulkarni, J. Colloid Interface Sci., 45 (3), 591 (1973).CrossRefGoogle Scholar
  3. 3.
    P.G. Johansen and A.S. Buchanan, Australian J. Chem., 10, 398 (1957).CrossRefGoogle Scholar
  4. 4.
    J. Schuylenborgh and A.M.H. Sanger, Rec. Trav. China., 68, 999 (1949).CrossRefGoogle Scholar
  5. 5.
    G.A. Parks, Chem. Rev., 65, 177 (1965).CrossRefGoogle Scholar
  6. 6.
    B. Dobias, J. Spurny and E. Frendlova, Collection Czech. Chem. Commun., 24, 3668 (1957).Google Scholar
  7. 7.
    A.S. Joy and D. Watson in “Proc. Vlth Int. Mineral Process. Congress,” p. 355, Pergamon Press, Oxford, 1965.Google Scholar
  8. 8.
    G.D. Parfitt, J. Ramsbotham and C.H. Rochester, J. Colloid Interface Sci., 41, 437 (1972).CrossRefGoogle Scholar
  9. 9.
    R.H. Ottewill and J.M. Tiffany, J. Oil Colour Chèm. Assoc. 50, 844 (1967).Google Scholar
  10. 10.
    D.N. Furlong and G.D. Parfitt, J. Colloid Interface Sci., 65, 548 (1978).CrossRefGoogle Scholar
  11. 11.
    T.W. Healy, G.R. Weise, D.E. Yates and B.V. Kavanagh, J. Colloid Interface Sci., 42, 647 (1973).CrossRefGoogle Scholar
  12. 12.
    R.O. James and T.W. Healy, J. Colloid Interface Sci., 40, 53 (1972).CrossRefGoogle Scholar
  13. 13.
    R.D. Kulkarni and P. Somasundaran, Powder Technol., 14, 279 (1976).CrossRefGoogle Scholar
  14. 14.
    A. Breeuwsma, “Adsorption of Ions on Hematite (α-Fe2O3), A Colloid Chemistry Study,” Thesis, Agricultural Univ., Wageningen, p. 65, 1973.Google Scholar
  15. 15.
    I.J. Lin and P. Somasundaran, Powder Technol., 6, 171 (1972).CrossRefGoogle Scholar
  16. 16.
    T. Smolik, J. Harman and D.W. Fuerstenau, Trans. AIME, 235, 367 (1966).Google Scholar
  17. 17.
    S.S. Jorgensen and A.T. Jensen, J. Phys. Chem., 71, 745 (1967).CrossRefGoogle Scholar
  18. 18.
    J.C. Jamieson and J.R. Goldsmith, Amer. Mineralogist, 45, 818 (1960).Google Scholar
  19. 19.
    A.M. Gaudin and D.W. Fuerstenau, Trans. AIME, 208, 1365 (1957).Google Scholar
  20. 20.
    H.C. Li, Ph.D. Thesis, M.I.T., Cambridge, Mass., 1958.Google Scholar
  21. 21.
    Work of Ohyama and Usui cited in A.S. Joy, R.M. Manser, K. Lloyd and D. Watson, Trans. IMM London, 75, C81 (1966).Google Scholar
  22. 22.
    G.L. Zucker, D.Sc. Thesis, Columbia University, New York, 1959.Google Scholar
  23. 23.
    Y. Fujii, Unpublished Work, Henry Krumb School of Mines, Columbia University, New York, 1965.Google Scholar
  24. 24.
    R.D. Kulkarni and P. Somasundaran, Inter. J. Mineral Process., 4, 89 (1974) .CrossRefGoogle Scholar
  25. 25.
    D.E. Meyer, “Surface Impurities on SiO2 and Their Effect on Water Adsorption Isotherm,” paper presented at 42nd National Colloid Symposium, Chicago, June 1968.Google Scholar
  26. 26.
    F.M. Fowkes and T.E. Burgess in “Clean Surfaces: Their Preparation and Characterization for Interfacial Studies,” G. Goldfinger, Editor, p. 351, Marcel Dekker, New York, 1970.Google Scholar
  27. 27.
    A.S. Buchanan and R.C. Openheim, Aust. J. Chem., 21, 2367 (1968).CrossRefGoogle Scholar
  28. 28.
    P. Somasundaran, in “Clean Surfaces: Their Preparation and Characterization for Interfacial Studies,” G. Goldfinger, Editor, p. 285, Marcel Dekker, New York, 1970.Google Scholar
  29. 29.
    G.A. Parks, Advan. Chem. Series, 67, 121 (1967).Google Scholar
  30. 30.
    A.M. Gaudin, “Flotation,” Second Edition, McGraw Hill, New York, 1957.Google Scholar
  31. 31.
    P. Somasundaran and D.W. Fuerstenau, J. Phys. Chem., 70, 90 (1966).CrossRefGoogle Scholar
  32. 32.
    V.I. Likhtman, P.A. Rebinder and G.V. Karpenko,” Effect of a Surface Active Medium on the Deformation of Metals,” Her Majesty’s Stationary Office, London, 1958.Google Scholar
  33. 33.
    E.S. Machlin, in “Strengthening Mechanisms in Solids,” American Society for Metals, Cleveland, p. 375, 1962.Google Scholar
  34. 34.
    A.R.C. Westwood, Phil. Mag., 7, 633 (1963).CrossRefGoogle Scholar
  35. 35.
    A.L. Mular, Trans. AIME, 235, 204 (1965).Google Scholar
  36. 36.
    A.M. Yousseff, J. Colloid Interface Sci., 54, 447 (1976).CrossRefGoogle Scholar
  37. 37.
    W. Kaye, J. Colloid Interface Sci., 46, 543 (1974).CrossRefGoogle Scholar
  38. 38.
    M.L. White and J.F. Pudvin cited in “Environmental Control in Electronic Manufacturing,” P.W. Morrison, Editor, p. 175, Van Nostrand Reinhold Co., New York, 1973.Google Scholar
  39. 39.
    K.S.W. Sing in “Characterization of Powder Surfaces,” G.D. Parfitt and K.S.W. Sing, Editors, p. 1, Acad. Press, London, 1976.Google Scholar
  40. 40.
    A.W. Adamson, “Physical Chemistry of Surfaces,” Interscience Publ., New York, 1960.Google Scholar
  41. 41.
    “Quantasorb Surface Area Analyzer,” Bulletin, Quantachrome Corp., New York, 1977.Google Scholar
  42. 42.
    R. Hogg, Pennsylvania State University, Personal Communication, 1978.Google Scholar
  43. 43.
    O. Johan and A.V. Samudra in “Characterization of Solid Surfaces,” P.F. Kane and G.R. Larrabee, Editors, p. 107, Plenum Press, New York, 1974.Google Scholar
  44. 44.
    D.F. Stein, J. Vac. Sci. Technol., 12, 1 (1975).Google Scholar
  45. 45.
    T.A. Carlson, Phys. Today, 25, 1 (1972).CrossRefGoogle Scholar
  46. 46.
    J.A. Leys and J.T. Mackinney, paper presented at the 9th Annual Congress of Microbeam Analysis Soc. of America, July 22–24, Ottawa, Canada, 1974.Google Scholar
  47. 47.
    “Characterization of Solid Surfaces,” P.F. Kane and G. R. Larrabee, Editors, Plenum Press, New York, 1974.Google Scholar
  48. 48.
    P. Somasundaran and R.D. Kulkarni, J. Colloid Interface Sci., 45, 591 (1973) .CrossRefGoogle Scholar
  49. 49.
    P. Somasundaran, S. Ramachandran and R.D. Kulkarni, J. Electro-chem. Soc. India, 26 (2) , 7 (1977).Google Scholar
  50. 50.
    A.F. Taggart, T.C. Taylor, and CR. Ince, Trans. AIME, 87, 285 (1930).Google Scholar
  51. 51.
    D.W. Fuerstenau, P.H. Metzger and G.D. Seele, Eng. and Mining J., 158 (3), 93 (1957).Google Scholar
  52. 52.
    R.N. Hargreaves and H.P. Schreiber, CIM Bulletin, June, 84 (1974).Google Scholar
  53. 53.
    C.C. Harris in “Second Symposium on Coal Preparation,” Papers No. 3 and 9, The University of Leeds, Dept. of Mining, October 1957.Google Scholar
  54. 54.
    R.D. Kulkarni and P. Somasundaran in “Proc. Symp. on Oxide-Electrolyte Interfaces,” R.S. Alwitt, Editor, p. 31, The Electrochemical Society, 1973.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • P. Somasundaran
    • 1
  • Brij M. Moudgil
    • 1
  1. 1.Henry Krumb School of MinesColumbia UniversityNew YorkUSA

Personalised recommendations