Advertisement

Phosphoproteins as Specifiers for Mediators and Modulators in Neuronal Function

  • Yigal H. Ehrlich
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 116)

Abstract

A large body of evidence has accumulated indicating that protein phosphorylation plays an important role in the regulation of metabolic processes in eukaryotic cells. Thus, glycogenolysis, glycogen synthesis and lipolysis are controlled, respectively, by the phosphorylation of glycogen phosphorylase-kinase, glycogen-synthetase and triglyceride-lipase (for review see RUBIN and ROSEN, 1975). Subsequent to these initial discoveries, it was found that the phosphorylation of proteins is involved in the regulation of a diversity of physiological and metabolic processes occuring in many different organs. In addition, it has been demonstrated that in each of these organs the process of protein phosphorylation is influenced by physiological affectors that regulate cellular functions in the respective target tissue (e.g. polypeptide hormones, steroid hormones, cyclic nucleotides, calcium ions, etc.). The integration of all these findings has led to the suggestion (GREENGARD, 197 8a) that the phosphorylation of proteins may be a final common pathway for a diversity of biological regulatory agents.

Keywords

Adenylate Cyclase Protein Phosphorylation Neuronal Function Synaptic Membrane Phosphorylative Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BONNET, K. A., BRANCHEY, L. G., FRIEDHOFF, A. J. and EHRLICH, Y. H. (1978) Life Sciences, 22: 2003– 2008.PubMedCrossRefGoogle Scholar
  2. BROWNING, M., DUNWIDDLE, T., BENNETT, W., GISPEN, W. H. &LYNCH, G. (1979) Science, 203, 60–62.PubMedCrossRefGoogle Scholar
  3. CHEUNG, W. Y., BRADHAM, L. S., LYNCH, T. G., YING, M. N. and TALLANT, E. A. (1975) Biochem. Biophvs. Res. Comm., 66, 1055–1063.CrossRefGoogle Scholar
  4. CONWAY, C. G. and ROUTTENBERG, A. (197 8) Brain Res. 139, 366–373.PubMedCrossRefGoogle Scholar
  5. COSTA, E., CUROSAWA, A. and GUIDOTTI, A. (1976) Proc. Natl. Acad. Sci. US, 73, 3887–3891.CrossRefGoogle Scholar
  6. COSTA, E. (1978) Presented at the 4th International Cate-cholamine Symposium, California.Google Scholar
  7. DAVIS, L. G. and EHRLICH, Y. H. (1978) Trans. Am. Soc. Neurochem. 9: 192.Google Scholar
  8. DE BLAS, A. L., WANG, Y. J., SORENSEN, R. and MAHLER, H. Manuscripts submitted for publication, (1979) .Google Scholar
  9. DE LORENZO, R. J. (1976) Biochem. Biophys. Res. Comm. 71, 590–597.CrossRefGoogle Scholar
  10. DE LORENZO, R. J. and FREEDMAN, S. D. (1977) Epilepsia, 18: 357–365.CrossRefGoogle Scholar
  11. DISMUKES, R. K. and DALY, J. W. (1976) Experientia, 32: 730–732.PubMedCrossRefGoogle Scholar
  12. EHRLICH, Y. H. (1979) Proceedings of the 7th Meeting of the International Society for Neurochem. in-press.Google Scholar
  13. EHRLICH, Y. H. and ROUTTENBERG, A. (1974) FEBS Lett. 45_, 237–243.PubMedCrossRefGoogle Scholar
  14. EHRLICH, Y. H. and ROUTTENBERG, A. (1975) Trans. Am. Soc. Neurochem. 6, 83.Google Scholar
  15. EHRLICH, Y. H., RABJOHNS, R. R. and ROUTTENBERG, A. (1977a) Pharmac. Biochem. Behav. 6, 169–174.CrossRefGoogle Scholar
  16. EHRLICH, Y. H., BRUNNGRABER, E. G., SINHA, P. K. and PRASAD, K. N. (1977b) Nature (Lond.) 265, 238–240.CrossRefGoogle Scholar
  17. EHRLICH, Y. H., DAVIS, L. G., GILFOIL, T. and BRUNNGRABER,Google Scholar
  18. E. G. (1977c) Neurochemical Research 2, 533–548.CrossRefGoogle Scholar
  19. EHRLICH, Y. H., BONNET, K. A., DAVIS, L. G. and BRUNNGRABER, E. G. (l977d) In: Mechanisms, Regulation and Special Functions of Protein Synthesis in Brain (Eds. Roberts, S., Lajtha, A., and Gispen, W. H.) Elsevier, Amst. 271–278.Google Scholar
  20. EHRLICH, Y. H., BONNET, K. A., DAVIS, L. G. and BRUNNGRABER, E. G. (1978a) Life Sci., 23, 127–136.CrossRefGoogle Scholar
  21. EHRLICH, Y. H., PRASAD, K. N., DAVIS, L. G., SINHA, P. K. and BRUNNGRABER, E. G. (1978b) Neurochem. Res. 3, 803–813.PubMedCrossRefGoogle Scholar
  22. EHRLICH, Y. H., DAVIS, L. G., and BRUNNGRABER, E. G. (1978c) Trans. Am. Soc. Neurochem., 9, 77.Google Scholar
  23. EHRLICH, Y. H., DAVIS, L. G. and BRUNNGRABER, E. G. (l978d) Brain Res. Bull. 3 ,251–256.PubMedCrossRefGoogle Scholar
  24. EHRLICH, Y. H., KEEN, P. B., DAVIS, L. G. and BRUNNGRABER, E. G. (1979) Trans. Am. Soc. Neurochem., 10, in-press.Google Scholar
  25. GAZIT, Y., OHAD, I. and LOYTER, A. (1976) Bioch. Biophys. Acta. 436, 1–14.CrossRefGoogle Scholar
  26. GNEGY, M. E., COSTA, E. and UZUNOV, P. (1976a) Proc . Natl. Acad. US, 7 3, 352–355.CrossRefGoogle Scholar
  27. GNEGY, M. E., UZUNOV, P. and COSTA, E. (1976b) Proc. Natl. Acad. US, 73, 3887–3890.CrossRefGoogle Scholar
  28. GOLDSTEIN, M., BRONAUG, B., EBSTEIN, B. AND ROBERGE, C. (1976) Brain Res. 109,563–574.PubMedCrossRefGoogle Scholar
  29. GREENGARD, P. (1976) Nature (London), 260, 101–108.CrossRefGoogle Scholar
  30. GREENGARD, P. (1978a) Science, 199, 146–152.PubMedCrossRefGoogle Scholar
  31. GREENGARD, P. (1978b) Cyclic Nucleotides, Phosphorylated Proteins, and Neural Function. Raven Press, N.Y. 124, pp.Google Scholar
  32. GREENGARD, P. and KEBABIAN, J. W. (1974) Fed. Proc., 33, 1059–1067.PubMedGoogle Scholar
  33. HEALD, P. J. (1957) Biochem. J., 66, 659–663.PubMedGoogle Scholar
  34. HERSHKOWITZ, M. (1978) Biochim. Biophys. Acta., 542, 274– 283.PubMedCrossRefGoogle Scholar
  35. IWATSUBO, K. and CLOUET, D. H. (1975) Biochem. Pharm. 24, 1499–1503.PubMedCrossRefGoogle Scholar
  36. JOH, T. H., PARK, D. H., BRODSKY, M. J. and REIS, D. J. (1978) Proc. Soc. Neuroscience, 8th annual meeting.Google Scholar
  37. JOHNSON, E. M., MAENO, H. and GREENGARD, P. (1971) J. Biol. Chem. 246, 7731–7739.PubMedGoogle Scholar
  38. JOHNSON, E. M., UEDA, T., MAENO, H. and GREENGARD, P. (1972) J. Biol. Chem. 247, 5650–5652.PubMedGoogle Scholar
  39. KUO, J.-F., and GREENGARD, P. (1969) Proc. Natl. Acad. Sci. US, 64, 1349–1355.CrossRefGoogle Scholar
  40. LAL, H. (1976) Life Sci., 17, 483–496.CrossRefGoogle Scholar
  41. LIBET, B. and TOSAKA, T. (1970) Proc. Natl. Acad. Sci. US 67, 667–673.CrossRefGoogle Scholar
  42. LOVENBERG, W., BRUCKWICH, E. A. and HANBAUER, I. (1975) Proc. Natl. Acad. Sci. US, 72, 2955–2958.CrossRefGoogle Scholar
  43. MAHLER, H. R. (1977) Neurochem. Res., 2, 119–148.CrossRefGoogle Scholar
  44. MALKINSON, A. M., KRUEGER, B. K., RUDOLPH, S. A., CASNELLIE, J. E., HALEY, B. E. and GREENGARD, P. (1975) Metabolism 24, 333–341.CrossRefGoogle Scholar
  45. MIYAMOTO, E., KUO, J.-F. and GREENGARD, P. (1969) Science, 165, 63–65.PubMedCrossRefGoogle Scholar
  46. PRASAD, K. N. (1975) Biological Rev., 50, 129–165.CrossRefGoogle Scholar
  47. RAM, J. L. and EHRLICH, Y. H. (1978) J. Neurochem. 30, 487–491.PubMedCrossRefGoogle Scholar
  48. REIS, D. J., JOH, T. H. and ROSS, R. D. (1975) J. Pharm. Exp. Therap., 193, 775–784.Google Scholar
  49. RODNIGHT, R. and LAVIN, B. E. (1966) Biochem. J., 101, 495–501.PubMedGoogle Scholar
  50. RODNIGHT, R. (1975) In: Metabolic Compartmentalization and Neurotransmission (Eds. Berl, Clark, and Schneider) Plenum Press, N.Y., 205–228.CrossRefGoogle Scholar
  51. RODNIGHT, R. (197 7) In: Mechanisms, Regulation and Special Function of Prot. Synth, in Brain. (Ed: Roberts, S., Lajtha, A., and Gispen, W. H.) Elsevier, Amsterdam, p. 255–266.Google Scholar
  52. ROUTTENBERG, A. and EHRLICH, Y. H. (1975) Brain Research, 92, 415–430.PubMedCrossRefGoogle Scholar
  53. RUBIN, C. S. and ROSEN, O. N. (1975) Ann. Rev. Biochem. 44, 831–887.PubMedCrossRefGoogle Scholar
  54. SCHULMAN, H. &GREENGARD, P. (1978) Nature, 271, 478–479.PubMedCrossRefGoogle Scholar
  55. SIMON, E. J., HILLER, J. M. and EDELMAN, I. (1975) Science, 190, 389–390.PubMedCrossRefGoogle Scholar
  56. SLOBODA, R. D., RUDOLPH, S. A., ROSENBAUM, J. L. and GREENGARD, P. (1975) Proc. Natl. Acad. Sci. US., 72, 177–181.CrossRefGoogle Scholar
  57. TAMIR, H., MAHDIK, S. P. and RAPPORT, M. M. (1976) Anal. Biochem, 76, 634–647.PubMedCrossRefGoogle Scholar
  58. TAMIR, H., RAPPORT, M. M. and ROZIN, L. (1974) J. Neuro chem., 23, 943–949.Google Scholar
  59. UEDA, T., MAENO, H. and GREENGARD, P. (1973) J. Biol. Chem., 248, 8295–8325.PubMedGoogle Scholar
  60. UEDA, T. and GREENGARD, P. (1977) J. Biol. Chem., 252, 5155–5163.PubMedGoogle Scholar
  61. UNO, I., UEDA, T. and GREENGARD, P. (1976) J. Biol. Chem. 251, 2192–2195.PubMedGoogle Scholar
  62. VOLAVKA, J., DAVIS, L. G. and EHRLICH, Y. H. (1979) Schizophrenia Bull. in-press.Google Scholar
  63. WALTER, U., KANOF, P., SCHULMAN, H. and GREENGARD, P. (1978) J. Biol. Chem., 253, 6275–6280.PubMedGoogle Scholar
  64. WELLER, M. and RODNIGHT, R. (1970) Nature (Lond.), 225, 187–188.CrossRefGoogle Scholar
  65. WELLER, M. and RODNIGHT, R. (1973) Biochem. J., 132, 483–492.PubMedGoogle Scholar
  66. WELLER, M. and MORGAN, I. (1976) Biochim. Biophys . Acta. 433, 223–228.PubMedCrossRefGoogle Scholar
  67. WELLER, M. and MORGAN, I. (197 7) Biochim. Biophys, Acta. 465, 527–534.CrossRefGoogle Scholar
  68. WILLIAMS, M., PAVLIK, A. and RODNIGHT, R. (1974) J. Neuroch em., 22, 373–376.CrossRefGoogle Scholar
  69. WILLIAMS, M. and RODNIGHT, R. (1977) Prog. in Neurobiol. 8, 183–250.CrossRefGoogle Scholar
  70. ZWIERS, H., VELDHUIS, D., SCHOTMAN, P. and GISPEN, W. H. (1976) Neurochem. Res., 1, 669–677.CrossRefGoogle Scholar
  71. ZWIERS, H., WIEGANT, V. M., SCHOTMAN, P. &GISPEN, W. H. (1977) In: Mech. Regulation and Special Function of Protein Synthesis in the Brain. (Roberts, S., Lajtha, A. &Gispen, W. H. eds.). Elsevier-North Holland Biomed. Press, Amsterdam, p. 267–272.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Yigal H. Ehrlich
    • 1
  1. 1.The Missouri Institute of Psychiatry, School of MedicineUniversity of Missouri-ColumbiaSt. LouisUSA

Personalised recommendations