Do Behaviorally Active Polypeptide Hormones Act at Crucial “Command” Sites or at Many Sites, from “Command” Down to “Final Common Paths”?

  • Jeffrey L. Ram
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 116)


Mechanisms by which polypeptides interact with neu rons in higher animals may have their resolution suggested by analogy with results in simpler systems, such as in cell culture systems (BARKER, et al., 1978), in isolated parts of the nervous system, such as in brain slices (BLOOM, et al., 1978), or in nearly intact, but simpler, nervous systems of invertebrates (see below). For questions concerning organizational aspects of the nervous system, cell culture and brain slice preparations lack the requisite organization to provide an appropriate analogy, but invertebrate systems offer technically accessible but nevertheless sufficiently structured preparations for studying these problems. For example, one question of interest to us is whether polypeptide hormones which affect behavior exert their effects by acting at a few crucial “command” sites in the nervous system or whether they interact at many levels, from “command” down to “final common paths” residing in motor neurons and their target muscles.


Motor Neuron Cerebral Ganglion Medial Lobe Command Neuron Abdominal Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ARCH, S. (1976) Amer. Zool. 16, 167–175.Google Scholar
  2. ATWOOD, H. L. &WIERSMA, C. A. G. (1967) J. Exp. Biol., 46, 249–261.PubMedGoogle Scholar
  3. BARKER, J. L., NEALE, J. H., SMITH, T. G., JR., &MACDONALD, R. L. (1978) Science, 199, 1451–1453.PubMedCrossRefGoogle Scholar
  4. BRANTON, W. D., ARCH, S., SMOCK, T., &MAYERI, E. (1978) Proc. Nat. Acad. Sci., 75, (in press).Google Scholar
  5. COGGESHALL, R. E. (1967) J. Neurophysiol., 30, 1263–1287.PubMedGoogle Scholar
  6. DAVIS, W. J., MPITSOS, G. J., &PINNEO, J. M. (1974b) J. Comp. Physiol., 90, 225–243.CrossRefGoogle Scholar
  7. DAVIS, W. J., MPITSOS, G. J., SIEGLER, M. V. S., PINNEO, J. M., &DAVIS, K. B. (1974a) Amer. Zool., 14, 1037–1050.Google Scholar
  8. DAVIS, W. J., SIEGLER, M. V. S., &MPITSOS, G. J. (1973) J. Neurophysiol., 36, 258–274.PubMedGoogle Scholar
  9. DELLMANN, H. D. &SIMPSON, J. B. (1975) Brain-Endocrine Interaction II. The Ventricular System (Karger, Basel) , pp. 166–189.Google Scholar
  10. FRAZIER, W. T., KANDEL, E. R., KUPFERMANN, I., WAZIRI, R., &COGGESHALL (1967) J. Neurophysiol., 30, 1288–1351.Google Scholar
  11. GAINER, H. (197 2) Brain Res., 39, 387–402.PubMedCrossRefGoogle Scholar
  12. GILLETTE, R. &DAVIS, W. J., (1977) J. Comp. Physiol., 116, 129–159.CrossRefGoogle Scholar
  13. GILLETTE, R., KOVAC, M. P., &DAVIS, W. J. (1978) Science, 199, 798–801.PubMedCrossRefGoogle Scholar
  14. GRILLNER, S. (1975) Physiol. Rev., 55, 247–304.PubMedCrossRefGoogle Scholar
  15. HOFFMANN, W. E. &PHILLIPS, M. I., (1976) Brain Res., 108, 59–73.CrossRefGoogle Scholar
  16. KANDEL, E. R. (1976) Cellular Basis of Behavior (San Francisco: W. H. Freeman).Google Scholar
  17. KUPFERMANN, I. (1967) Nature, 216, 814–815.PubMedCrossRefGoogle Scholar
  18. KUPFERMANN, I. &WEISS, K. R. (1976) J. Gen. Physiol., 67, 113–123.PubMedCrossRefGoogle Scholar
  19. LEE, R. M. &LIEGEOIS, R. J. (1974) J. Neurobiol., 5, 157–164.Google Scholar
  20. LEWIS, P. R., &SHUTE, C. C. D. (1967) Brain, 90, 521– 540.PubMedCrossRefGoogle Scholar
  21. LICHTENSTEIGER, W. (1967) Brain Res., 4, 52–59.PubMedCrossRefGoogle Scholar
  22. MAYERI, E., BROWNELL, P. &BRANTON, W. D. (1978a) J. Neurophysiol. (in press).Google Scholar
  23. MAYERI, E., BROWNELL, W. D., BRANTON, W. D., &SIMON, S. B. (1978b) J. Neurophysiol. (in press).Google Scholar
  24. PHILLIPS, M. I. &FELIX, D. (1976) Brain Res., 109, 531– 540.PubMedCrossRefGoogle Scholar
  25. PHILLIPS, M. I., BALHORN, L., LEAVITT, M. &HOFFMANN, W. (1974) Brain Res., 80, 95–110.PubMedCrossRefGoogle Scholar
  26. RAM, J. L., SALPETER, S. R., &DAVIS, W. J. (1977) J. Comp. Physiol., 119, 171–194.Google Scholar
  27. SIEGLER, M. V. S., MPITSOS, G. J., &DAVIS, W. J. (1974) J. Neurophysiol., 37, 1173–1196.PubMedGoogle Scholar
  28. SIMPSON, J. B. &ROUTTENBERG, A. (197 3) Science, 181, 1172–1175.PubMedCrossRefGoogle Scholar
  29. SIMPSON, J. B., SAAD, W. A., &EPSTEIN, A. N. (1975) in Onesti, G., Fernandes, M. &Kim, K. E. (ed.) Regula tion of Blood Pressure by the Central Nervous System (New York: Grune &Stratton) pp. 191–202.Google Scholar
  30. SMOCK, T., ARCH, S., &LLOYD, P. (1978) Soc. Neurosci. Abst., 4, 206.Google Scholar
  31. STINNAKRE, J. &TAUC, L. (1969) J. Exp. Biol., 51, 347– 361.PubMedGoogle Scholar
  32. STRUMWASSER, F., JACKLET, J. W., &ALVAREZ, R. F. (19 69) Comp. Bioch. Physiol., 29, 197–206.CrossRefGoogle Scholar
  33. STUART, D. K. &STRUMWASSER, F. (197 8) Soc. Neurosci. Abst., 4, 207.Google Scholar
  34. TOEVS, L. A. &BRACKENBURY, R. W. (1969) Comp. Bioch. Physiol., 29, 207–216.CrossRefGoogle Scholar
  35. TRUMAN, J. W. (1978) J. Exp. Biol. 74, 151–173.Google Scholar
  36. TRUMAN, J. W. &SOKOLOVE, P. G. (1972), Science, 175, 1491–1493.PubMedCrossRefGoogle Scholar
  37. WEISS, K. R., COHEN, J. &KUPFERMANN, I. (1975) Brain Res., 99, 381–386.PubMedCrossRefGoogle Scholar
  38. WIERSMA, C. A. G. (1952) Cold Spring Harbor Symp. Quant. Biol., 17, 155–163.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Jeffrey L. Ram
    • 1
  1. 1.Department of Physiology, School of MedicineWayne State UniversityDetroitUSA

Personalised recommendations