Opioid Peptides as Modulators of Cyclic AMP Levels

  • Werner A. Klee
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 116)


One of the most clearly defined biochemical actions of the opiates is the receptor mediated inhibition of adenylate cyclase. Collier and Roy (1974) showed that cAMP accumulation in rat brain homogenates is inhibited by opiates, that the inhibition is blocked by the specific inhibitor, naloxone, and that the potencies of a series of opiate agonists as blockers of cAMP formation are similar to their potencies as analgesic agents. Soon thereafter, Sharma, et al, (1975a) found that the adenylate cyclase of neuroblastoma X glioma cell (NG108-15) membranes is in hibited by opiates in a similar, receptor mediated, fashion. The neuroblastoma X glioma hybrid cell NG108-15 homogenates provide an easily accessible source of opiate receptors (KLEE and NIRENBERG, 197 4) which remain coupled to adenylate cyclase more tenuously than those in brain homogenates seem to be. The NG108-15 system is therefore more easily reproducible (VAN INWAGEN, et al, 1975). In a parallel series of studies, Traber, et al, (1975a), using the same neuroblastoma X glioma hybrid cell line, have also shown that opiates decrease cellular cAMP levels.


Adenylate Cyclase Opioid Peptide Adenylate Cyclase Activity Wheat Gluten Opioid Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BRANDT, M., BUCHEN, C., and HAMPRECHT, B. (1977) Endorphins exert opiate-like action on neuroblastoma X glioma hybrid cells. FEBS Lett., 80, 251–254.PubMedCrossRefGoogle Scholar
  2. COLLIER, H. O. J., and ROY, A. C. (1974) Morphine-like drugs inhibit stimulation by E prostaglandins of cyclic AMP formation by rat brain homogenate. Nature , 248, 24–26.PubMedCrossRefGoogle Scholar
  3. COLLIER, H. 0. J. and FRANCIS, D. L. (1978) A Pharmacolo gical Analysis of Opiate Tolerance/Dependence in: The Bases of Addiction, edited by J. Fishman, Dahlem Konferenzen, Berlin. p. 281–298.Google Scholar
  4. COLLIER, H. O. J., FRANCIS, D. L., MCDONALD-GIBSON, W. J., ROY, A. C., and SAEED, S. A. (197 5) Prostaglandins, cyclic AMP. and the mechanism of opiate dependence. Life Sci., 17, 86–90.CrossRefGoogle Scholar
  5. DOHAN, F. C. (1966) Cereals and schizophrenia: data and hypothesis. Acta Psychiat. Scand., 42, 125–152.PubMedCrossRefGoogle Scholar
  6. DOHAN, F. C., and GRASBERGER, J. C., 1973 Relapsed schizophrenics: earlier discharge from the hospital after cereal-free, milk-free diet. Amer. J. Psychiat., 130, 685–688.PubMedGoogle Scholar
  7. GIAGNONI, G., SABOL, S. L., and NIRENBERG, M. (197 7) Synthesis of opiate peptides by a clonal pituitary tumor cell line. Proc. Natl. Acad. Sci. USA, 74, 2259-2263.PubMedCrossRefGoogle Scholar
  8. GOLDSTEIN, D. B., and GOLDSTEIN, A. (1961) Possible role of enzyme inhibition and repression in drug tolerance and addiction. Biochem. Pharmacol., 8, 48.CrossRefGoogle Scholar
  9. HIMMELSBACH, C. K. (1943) The morphine abstinence syndrome. Fed. Proc, 2 ,201–203.Google Scholar
  10. IIJIMA, I., MINAMIKAWA, J., JACOBSON, A. E., BROSSI, A., RICE, K. C., and KLEE, W. A. (1978) Synthesis and biological properties of (+)-naloxone. J. Med. Chem., 21, 398–400.PubMedCrossRefGoogle Scholar
  11. KLEE, W. A., and NIRENBERG, M., (1974) A neuroblastoma X glioma hybrid cell with morphine receptors. Proc. Nat. Acad. Sci. USA, 71, 3474–3477.PubMedCrossRefGoogle Scholar
  12. KLEE, W. A., and NIRENBERG, M., (1976) Mode of action of endogenous opiate peptides. Nature, 263, 609–612.PubMedCrossRefGoogle Scholar
  13. KLEE, W. A., ZIOUDROU, C., and STREATY, R. A. (1978) Exorphins: peptides with opioid activity isolated from wheat gluten and their possible role in the etiology of schizophrenia. In: Endorphins in Mental Health Research, eds. E. Usdin, W. E. Bunney, and N. S. Kline, pp. 209–218. MacMillan, New York.Google Scholar
  14. LAMPERT, A., NIRENBERG, M., and KLEE, W. A. (1976) Tolerance and dependence evoked by an endogenous opiate peptide. Proc. Natl. Acad. Sci. USA, 73, 3165–3167.PubMedCrossRefGoogle Scholar
  15. LORD, J. A. H., WATERFIELD, A. A., HUGHES, J., and KOSTERLITZ, H. W. (1976) Multiple opiate receptors. In: Opiates and Endogenous Opioid Peptides, edited by H. W. Kosterlitz, pp. 275–280. Elsevier, North Holland.Google Scholar
  16. MATA, M. M., GAINER, H., and KLEE, W. A. (1977) Effect of dehydration on the endogenous opiate content of the rat neuro-intermediate lobe. Life Sci., 21, 1159–1162.PubMedCrossRefGoogle Scholar
  17. NATHANSON, N. M., KLEIN, W. L., and NIRENBERG, M. (1978) Regulation of adenylate cyclase activity mediated by muscarinic acetylcholine receptors. Proc. Natl. Acad. Sci. USA, 75, 1788–1792.PubMedCrossRefGoogle Scholar
  18. SABOL, S. L., and NIRENBERG, M. (1979) Regulation of adeny late cyclase of neuroblastoma X glioma hybrid cells by -adrenergic receptors. II. Long-lived increase of adenylate cyclase activity mediated by a-receptors. J. Biol. Chem., in-press.Google Scholar
  19. SHARMA, S. K., NIRENBERG, M., and KLEE, W. A. (1975a) Morphine receptors as regulators of adenylate cyclase activity. Proc. Nat. Acad. Sci. USA, 72, 590–594.PubMedCrossRefGoogle Scholar
  20. SHARMA, S. K., KLEE, W. A., and NIRENBERG, M. (1975b) Dual regulation of adenylate cyclase account for narcotic dependence and tolerance. Proc. Natl. Acad. Sci. USA, 72, 3092–3096.PubMedCrossRefGoogle Scholar
  21. SHARMA, S. K., KLEE, W. A., and NIRENBERG, M. (1977) Opiate-dependent modulation of adenylate cyclase. Proc. Natl. Acad. Sci., USA, 74, 3365–3369.PubMedCrossRefGoogle Scholar
  22. SHUSTER, L. (1961) Repression and de-repression of enzyme synthesis as a possible explanation of some aspects of drug action. Nature, 189, 314–315.CrossRefGoogle Scholar
  23. TRABER, J., FISCHER, K., LATZIN, S., and HAMPRECHT, B. (1975a) Morphine antagonizes action of prostaglandin in neuroblastoma and neuroblastoma X glioma hybrid cells. Nature, 253, 120–122.PubMedCrossRefGoogle Scholar
  24. TRABER, J., GULLIS, R., and HAMPRECHT, B. (1975b) Influence of opiates on the levels of adenosine 35 cyclic monophosphate in neuroblastoma X glioma hybrid cells. Life Sci., 16, 1863–1868.PubMedCrossRefGoogle Scholar
  25. VAN IUWEGEN, R. G., STRADA, S. J. and ROBISON, G. A. (1975) Effects of Prostaglandins and Morphine on Brain Adenylate Cyclase. Life Sci. 16, 1875–1876.CrossRefGoogle Scholar
  26. WAHLSTROM, A., BRANDT, M., MORODER, L., WUNSCH, E., LINDEBERG, G., RAGUARSSON, U., TERENIUS, L., and HAMPRECHT, B. (1977) Peptides related to 3-lipotropin with opioid activity. FEBS Lett., 77, 28–32.PubMedCrossRefGoogle Scholar
  27. ZIOUDROU, C., STREATY, R. A., and KLEE, W. A. (1979) Opioid peptides derived from food proteins: the exorphins. J. Biol. Chem., in press.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • Werner A. Klee
    • 1
  1. 1.Laboratory of General and Comparative BiochemistryNational Institute of Mental HealthBethesdaUSA

Personalised recommendations