The Behaviorally Active Neuropeptide ACTH as Neurohormone and Neuromodulator: The Role of Cyclic Nucleotides and Membrane Phosphoproteins

  • W. H. Gispen
  • H. Zwiers
  • V. M. Wiegant
  • P. Schotman
  • J. E. Wilson
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 116)


Investigations on the role of the pituitary-adrenal system in the adaptation of the organism to environmental stimuli, led de Wied to postulate that the pituitary would manufacture peptides which modulate behavior by a direct action on the brain (neuropeptides; DE WIED, 1969). Indeed, fragments of hormones of both the posterior pituitary (vasopressin, oxytocin) and the anterior pituitary (ACTH, MSH, ß-LPH) were found to possess strong behavioral activity which was clearly dissociated from effects on the endocrinon. Much effort was given to characterize the effects of the peptides on animal behavior and the significance of the research on behaviorally active peptides became eminent when independent reports in the literature pointed to a physiological role of known and hitherto unknown peptides in normal and abnormal human behavior (DE WIED and GISPEN, 1977; DE WIED, 1978). To date research on neuropeptides is a multidisciplinary struggle to unravel their location in the brain and their mechanism of action in terms of electrophysiological and neurochemical events and to assess their usefulness in the treatment of brain and behavioral diseases.


Adenylate Cyclase Cyclic Nucleotide Synaptic Plasma Membrane Posterior Thalamus Excessive Grooming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ALLEN, J. P., KENDALL, J. W., MCGILVRA, R. & VANCURA, C. (1974). Immunoreactive ACTH in cerebrospinal fluid. J. Clin. Endocrinol. 38, 586–593.CrossRefGoogle Scholar
  2. AKIL, H., WATSON, S. J., LEVY, R. M. and BARCHAS, J. D. (1978). ß-Endorphin and other 31 K fragments: pitui tary and brain systems. In: Characteristics and Functions of Opioids. (J. van Ree and L. Terenius, eds.) Elsevier/ North Holland Biomed. Press, Amsterdam. pp. 123–134.Google Scholar
  3. BARCHAS, J. D., AKIL, H., ELLIOTT, G. R., HOLMAN, R. B. & WATSON, S. J. (1978). Behavioral Neurochemistry: Neuroregulators and behavioral states. Science. 200, 964–973.PubMedCrossRefGoogle Scholar
  4. BERMAN, R. F., HULLIHAN, J. P. & WILSON, J. E. (1977). Comparison of in vivo and in vitro phosphorylation of synaptic membranes. Soc. Neuroscience Abstr., 3, 984.Google Scholar
  5. BERMAN, R. F., KINNIER, W. J., HULLIHAN, J. P. & WILSON, J. E. (1978). In vivo phosphorylation of postsynaptic density proteins. Soc. Neuroscience Abstr. 4, 987.Google Scholar
  6. BIRNBAUMER, L., POHL, S. L. & RODBELL, M. (1969). Adenylcyclase in fat cells. 1. Properties and the effects of adrenocorticotropin and fluoride. J. Biol. Chem. 244, 3468–3470.PubMedGoogle Scholar
  7. BOHUS, B. & Wied, D. (197 8). Pituitary-adrenal system hormones and adaptive behavior. In: General, Comparative and Clinical Endocrinology of the Adrenal Cortex. (J. CHESTER JONES & I. W. HENDERSON, eds.) Vol. 3, Acad. Press London, in press.Google Scholar
  8. BROWNING, M., DUNWIDDIE, T., GISPEN, W. H. & LYNCH, G. (1977). Alterations in a specific repetitive Stimu lation of the hippocampus. Soc. Neuroscience Abstr. 3, 1341.Google Scholar
  9. BROWNING, M., DUNWIDDIE, T., BENNETT, W., GISPEN, W. H. & LYNCH, G. (1978). Synaptic phosphoproteins: Specific changes after repetitive stimulation of the hippocampal slice. Science, 203, 60–62.CrossRefGoogle Scholar
  10. BURKHARD, W. P. & GEY, P. (1968). Adenyl cyclase in rat brain. Helv. Physiol. Pharmacol. Acta. 26, 197–198.Google Scholar
  11. CHRISTENSEN, C. W., HARSTON, C. T., KASTIN, A. J., KOSTRZEWA, R.M. & SPIRTES, M. A., Preliminary investigation on αMSH and MIF-I effects on cyclic AMP levels in rat brain. Pharmac. Biochem. Behav. 5, Suppl. 1, 117–120.Google Scholar
  12. COLBERN, D., ISAACSON, R., BOHUS, B. & GISPEN, W. H. (1977). Limbic-midbrain lesions and ACTH-induced excessive grooming. Life Sci. 21, 393–402.PubMedCrossRefGoogle Scholar
  13. COOLS, A. R., WIEGANT, V. M. & GISPEN, W. H. (1978). Distinct dopaminergic systems in ACTH-induced grooming. Eur. J. Pharmacol. 50, 265–268.PubMedCrossRefGoogle Scholar
  14. DELORENZO, R. J. (1976). Calcium-dependent phosphorylation of specific synaptosomal fraction proteins: possible role of phosphoproteins in mediating neurotransmitter release. Biochem. Biophys. Res. Comm. 71, 590–597.PubMedCrossRefGoogle Scholar
  15. DELORENZO, R. J. & FREEDMAN, S. D. (1977). Calcium-dependent phosphorylation of synaptic vesicle proteins and its possible role in mediating neurotransmitter release and vesicle function. Biochem. Biophys. Res. Comm. 77, 1036–1043.PubMedCrossRefGoogle Scholar
  16. Wied, D. (1964). Influence of anterior pituitary on avoidance learning and escape behavior. Amer. J. Physiol. 207, 255–259.Google Scholar
  17. Wied, D. (1969). Effects of peptide hormones on behavior. In: Frontiers in Neuroendocrinology (GANONG, W. F. & MARTINI, L. eds.). Oxford University Press, New York. 1969, 97–140.Google Scholar
  18. Wied, D., VAN DELFT, A. M. L., GISPEN, W. H., WEIJNEN, J. A. W. M. & VAN WIMERSMA GREIDANUS, Tj. B. (1972). The role of pituitary-adrenal system hormones on active-avoidance conditioning. In: Hormones and Behavior (S. LEVINE, ed.). Academic Press, Inc. New York: 135–171.Google Scholar
  19. Wied, D. & GISPEN, W. H. (1977). Behavioral effects of peptides. In: Peptides in Neurobiology (GAINER, H., ed.). Plenum Press, New York, 397–448.CrossRefGoogle Scholar
  20. Wied, D., BOHUS, B., VAN REE, J. M. & URBAN, I. (1978). Behavioral and electrophysiological effects of peptides related to lipotropin (ß-LPH). J. Pharm. Exp. Ther. 204, 570–580.Google Scholar
  21. Wied, D. (1978). Psychopapthology as a neuropeptide dysfunction. In: Characteristics and Function of Opioids (VAN REE, J. & TERENIUS, L. eds.) Elsevier/ North Holland Biomedical Press, 123–134.Google Scholar
  22. DOUGLAS, W. W. (197 3). How do neurones secrete peptides? Exocytosis and its consequences, including ‘synaptic vesicle’ formation, in the hypothaiamo-neurohypophyseal system. In: Drug Effects on Neuroendocrine Regulation, Progress in Brain Research, Vol. 39, (E. ZIMMERMANN, W. H. GISPEN, B. H. MARKS, & D. Wied, eds.) Elsevier, Amsterdam, pp. 21–3 9.CrossRefGoogle Scholar
  23. DUNN, A. J. & GISPEN, W. H. (1977). How ACTH acts on the brain. Biobehav. Reviews. 1, 15–23.CrossRefGoogle Scholar
  24. EHRLICH, Y. H., RABJOHNS, R. H. & ROUTTENBERG, A. (1977). Experiential input alters the phosphorylation of specific proteins in brain membranes. Pharmacol. Biochem. Behav. 6, 169–175.PubMedCrossRefGoogle Scholar
  25. FENTRESS, J. C. (19737. Development of grooming in mice with amputated forelimbs. Science, 179, 7 04–705.CrossRefGoogle Scholar
  26. FERRARI, W., GESSA, G. L. & VARGIU, L. (T5T3). Behavioral effects induced by intracisternally injected ACTH and MSH. Ann. New York Acad. Sci. 104, 330–345.CrossRefGoogle Scholar
  27. FORN, J. & KRISHNA, G. (1971). Effect of norepinephrine, histamine and other drugs on cyclic 3′5′-AMP forma tion in brain slices of various animal species. Pharmacology. 5, 193–204.PubMedCrossRefGoogle Scholar
  28. GISPEN, W. H., WIEGANT, V. M., GREVEN, H. M. & Wied, D. (1975). The induction of excessive grooming in the rat by intraventricular application of peptides derived from ACTH: Structure-activity studies. Life Sci. 17, 645–652.PubMedCrossRefGoogle Scholar
  29. GISPEN, W. H. & WIEGANT, V. M. (1976). Opiate antagonists suppress ACTH1–24 induced excessive grooming in the rat. Neurosci. Lett. 2 ,159–164.PubMedCrossRefGoogle Scholar
  30. GISPEN, W. H., VAN REE, J. M. & Wied, D. (1977a). Lipotropin and the central nervous system. Int. Rev. Neurobiol. 20, 209–250.PubMedCrossRefGoogle Scholar
  31. GISPEN, W. H., REITH, M. E. A., SCHOTMAN, P., WIEGANT, V. M., ZWIERS, H. & Wied, D. (1977b). CNS and ACTH-like peptides: Neurochemical responses and interaction with opiates. In:Neuropeptide Influences on the Brain and Behavior. (L. H. MILLER, C. A. SANDMAN & A. J. KASTIN, eds.). Raven Press, New York, pp. 61–80.Google Scholar
  32. GISPEN, W. H., PERUMAL, R., WILSON, J. E. & GLASSMAN, E. (197 7c). Phosphorylation of proteins of synaptosome-enriched fractions of brain during short-term training experience: The effects of various behavioral treatments. Behav. Biol. 21, 358–363.PubMedCrossRefGoogle Scholar
  33. GLASSMAN, E., GISPEN, W. H., PERUMAL, R., MACHLUS, B. & WILSON, J. E. (1973). The effect of short experiences on the incorporation of radioactive phosphate into synaptosomal and non-histone acid-extractable nuclear proteins from rat and mouse brain. In: Proceedings of 5th Int. Congress Pharmacol. San Francisco, 1972. Vol. 4, pp. 14–17.Google Scholar
  34. GLOSSMAN, H. & GIPS, H. (1975). Bovine adrenal cortex adenylate cyclase: properties of the particulate enzyme and effects of guanyl nucleotides. Naunyn-Schmiedeb er g’s Arch. Pharmacol. 289, 77–97.CrossRefGoogle Scholar
  35. GREENGARD, P. (1975T. Possible role for cyclic nucleotide and phosphorylated membrane proteins in postsynaptic actions of neurotransmitters. Nature. 260, 101–108.CrossRefGoogle Scholar
  36. HEALD, P. J. (1957). The incorporation of phosphate into cerebral phosphoprotein promoted by electrical im pulses. Biochem. J. 66, 659–663.PubMedGoogle Scholar
  37. HEALD, P. J. (1962). Phosphoprotein metabolism and ion transport in nervous tissue: a suggested connexion. Nature (Lond.) 193, 451–454.CrossRefGoogle Scholar
  38. HERSHKOWITZ, M. (1978). Influence of calcium on phosphorylation of a synaptosomal protein. Biochim. Biophys. Acta. 542, 274–283.PubMedCrossRefGoogle Scholar
  39. HOLMES, H., RODNIGHT, R. & KAPOOR, R. (1977). Effect of electroshock and drugs administered in vivo on protein kinase activity in rat brain. Pharmacol. Biochem. Behav. 6, 415–420.PubMedCrossRefGoogle Scholar
  40. JOLLES, J., ROMPA-BARENDREGT & GISPEN, W. H. (1979). Novelty and grooming in the rat. Behav. Biol. in press.Google Scholar
  41. KATZ, B. & MILEDI, R. (1967). A study of synaptic transmission in the absence of nerve impulses. J. Physiol. 192, 407–436.PubMedGoogle Scholar
  42. KOLATA, G. B. (1978). Polypeptide hormones: What are they doing in cells? Science, 201, 895–897.PubMedCrossRefGoogle Scholar
  43. KRIEGER, D. T., LIOTTA, A., SUDA, T., PALKOWITS, M. & BROWNSTEIN, M. J. (1977). Presence of immunoassayable ß-lipotropin in bovine brain and spinal cord; Lack of concordance with ACTH concentrations. Biochem. Biophys. Res. Comm. 76, 930–936.PubMedCrossRefGoogle Scholar
  44. KRUEGER, B. K., FORN, J. & GREENGARD, P. (1977). Depolarization-induced phosphorylation of specific proteins, mediated by calcium ion influx, in rat brain synaptosomes. J. Biol. Chem. 252, 2764–27 73.PubMedGoogle Scholar
  45. LANG, U., FAUCHERE, J. L., PELICAN, G. M., KARLAGANIS, G. & SCHWYZER, R. (1976). Hormone-receptor interactions. Adrenocorticotrophin-(7–24)-octadeca peptide stimulates adipocyte membrane adenylate cyclase without causing lipolysis in fat cells. FEBS Letters 66, 246–249.PubMedCrossRefGoogle Scholar
  46. MAINS, R., EIPPER, B. A. & LING, N. (1977)-Common pre cursor to corticotropins-endorphins. Proc. Natl. Acad. Sci., USA 74, 3014–3018.PubMedCrossRefGoogle Scholar
  47. MEZEY, E., PALKOVITS, M., DE KLOET, E. R., VERHOEF, J. & Wied, D. (197 8). Evidence for pituitary-brain transport of a behaviorally potent ACTH analog. Life Sci. 22, 831–838.PubMedCrossRefGoogle Scholar
  48. MIYAMOTO, E., MIYAZAKI, K., HIROSE, R. & KASHIBA, A. (1978). Multiple forms of protein kinases in myelin and microsomal fractions of bovine brain. J. Neurochem. 31, 269–275.PubMedCrossRefGoogle Scholar
  49. NATHANSON, J. A. & GREENGARD, P. (1977). “Second messengers” in the brain. Sci. American. 237 (2) 108–119.CrossRefGoogle Scholar
  50. PERUMAL, R., GISPEN, W. H., WILSON, J. E., GLASSMAN, E. (1975). Phosphorylation of proteins from the brains of mice subjected to short-term behavioral experiences. In: “Hormones Homeostasis and the Brain”. (GISPEN, W. H., VAN WIMERSMA GREIDANUS, TJ. B., BOHUS, B. & Wied, D. eds.) Progress in Brain Res. Vol. 42, 201–207.Google Scholar
  51. PERUMAL, R., GISPEN, W. H., GLASSMAN, E. & WILSON, J. E. (1977). Phosphorylation of proteins of synaptosomeenriched fractions of brain during short term training experiences: the effects of various behavioral treatments. Behavioral Biol. 21, 341–357.CrossRefGoogle Scholar
  52. REDBURN, D. A., SHELTON, D. & COTMAN, C. W. (1976). Calcium-dependent release of exogenously loaded γ-amino-(U-14C) butyrate from synaptosomes: time course of stimulation by potassium, veratridine, and the calcium ionphore A 2 3187. J. Neurochem. 26, 297–303.PubMedCrossRefGoogle Scholar
  53. REITH, M. E. A., SCHOTMAN, P. & GISPEN, W. H. (1974). Hypophysectomy, ACTH1–1. and in vitro protein synthesis in rat brain stem slices. Brain Res. 81, 571–575.PubMedCrossRefGoogle Scholar
  54. ROBERTS, J. L. & HERBERT, E. (1977). Characterization of a common precursor to corticotropin and ß-lipotropin: Identification of ß-lipotropin peptides and their arrangement relative to corticotropin in the precursor synthesized in a cell-free system. Proc. Natl. Acad. Sci. USA. 74, 5300–5304.PubMedCrossRefGoogle Scholar
  55. RODNIGHT, R., REDDINGTON, M. & GORDON, M. (1975). Methods for studying protein phosphorylation in cerebral tissues. In: Research Methods in Neurochemistry (N. MARKS & RODNIGHT, R. eds.). Plenum Press, New York. 3, 324–367.Google Scholar
  56. ROUTTENBERG, A., EHRLICH, Y. H. & RABJOHNS, R. H. (1975). Effect of a training experience on phosphorylation of a specific protein in neocortical and subcortical membrane preparations. Fed. Proc. 34, 17.Google Scholar
  57. RUDMAN, D. (1976). Injection of melatonin into cisterna magna increases concentrations of 3′,5′-cyclic guanosine inonophosphate in cerebrospinal fluid. Neuroendocrinology. 20, 235–242.PubMedCrossRefGoogle Scholar
  58. RUDMAN, D. & ISAACS, J. W. (1975). Effects of intrathecal injection of melanotropic-lipolytic peptides on the concentration of 3′, 5′-cyclic adenosine inonophos phate in cerebrospinal fluid. Endocrinology. 97, 1476–1480.PubMedCrossRefGoogle Scholar
  59. SAYERS, G., BEALL, R. J. & SEELIGS (1974). Modes of action of ACTH. In: Biochemistry of Hormones (RICHENBERG, H. V., ed.) Butterworths Univ. Park Press, London, 25–60.Google Scholar
  60. SCHLEGEL, W. & SCHWYZER, R. (1977). Purification of bovine adrenal-cortex plasma membrane vesicles containing a higher corticotrophin-sensitive adenylate cyclase system and angiotensin-II-binding sites. Eur. J. Biochem. 72, 415–424.PubMedCrossRefGoogle Scholar
  61. SCHOTMAN, P. & GISPEN, W. H. (1978). Neuropeptides and brain protein synthesis. Neuroscience Lett. Suppl. 1, S 228.Google Scholar
  62. SCHULMAN, H. & GREENGARD, P. (1978). Stimulation of brain membrane protein phosphorylation by calcium and an endogenous heat-stable protein. Nature, Vol. 271. p. 478–479.PubMedCrossRefGoogle Scholar
  63. SIEGHART, W., THEOHARIDES, T. C., ALPER, S. L., DOUGLAS, W. W. & GREENGARD, P. (1978). Calcium-dependent protein phosphorylation during section by exocytosis in the mast cell. Nature. 279, 329–331.CrossRefGoogle Scholar
  64. SPIRTES, M. A., CHRISTENSEN, C. W., HARSTON, C. T. & KASTIN, A. J. (1978). α-MSH and MIF-I effects on cGMP levels in various rat brain regions. Brain Research. 144, 189–193.PubMedCrossRefGoogle Scholar
  65. TREVOR, A. J. & RODNIGHT, R. (1965). The subcellular localization of cerebral phosphoproteins sensitive to electrical stimulation. Biochem. J. 95, 889–896.PubMedGoogle Scholar
  66. VAN WIMERSMA GREIDANUS, Tj. B., BOHUS, B. & Wied, D. (1975). CNS sites of action of ACTH, MSH and vasopressin in relation to avoidance behavior. In: Anatomical Neuroendocrinology (STUMPF, W. E., GRAND, L. D., eds.). S. Karger, A.G. Basel, 284–289.Google Scholar
  67. VERHOEF, J., PALKOVITS, M. & WITTER, A. (1977a). Distribution of a behaviorally highly potent ACTH4–9 analog in rat brain after intraventricular administration. Brain Research. 126, 89–104.PubMedCrossRefGoogle Scholar
  68. VERHOEF, J., WITTER, A. & Wied, D. (1977). Specific uptake of a behaviorally potent (3H)-ACTH4–9 analog in the septal area after intraventricular injection in rats. Brain Research. 131, 117–128.PubMedCrossRefGoogle Scholar
  69. VON HUNGEN, K. & ROBERTS, S. (1973). Adenylate-cyclase receptors for adrenergic neurotransmitters in rat cerebral cortex. Eur. J. Biochem. 36, 391–401.CrossRefGoogle Scholar
  70. WIEGANT, V. M. & GISPEN, W. H. (1975). Behaviorally ac tive ACTH analogs and brain cyclic AMP. Exp. Brain Res. 23, Suppl. 219.Google Scholar
  71. WIEGANT, V. M., ZWIERS, H., SCHOTMAN, P. & GISPEN, W. H. (1977). Endogenous phosphorylation of rat brain synaptosomal plasma membranes in vitro; some methodological aspects. Neurochem. Res. 3, 443–453.CrossRefGoogle Scholar
  72. WIEGANT, V. M., COOLS, A. R., GISPEN, W. H. (1977). ACTH induced excessive grooming involves brain dopamine. Eur. J. Pharmacol. 41, 343–345.PubMedCrossRefGoogle Scholar
  73. WIEGANT, V. M., DUNN, A. J., SCHOTMAN, P. & GISPEN, W. H. (1979). ACTH-like peptides: possible regulators of rat brain cyclic AMP: Brain Research, in-press.Google Scholar
  74. WILSON, J. E. (1979). Protein phosphorylation involvement in brain function. In: Biochemistry of Brain Vol. II. (KUMAR, S. ed.) Pergamon Press. In-press.Google Scholar
  75. ZWIERS, H., VELDHUIS, D., SCHOTMAN, P. & GISPEN, W. H. (1976). ACTH, cyclic nucleotides and brain protein phosphorylation in vitro. Neurochem. Res. 1, 669–677.CrossRefGoogle Scholar
  76. ZWIERS, H., WIEGANT, V. M., SCHOTMAN, P. & GISPEN, W. H. (1977). Intraventricular administered ACTH and changes in rat brain protein phosphorylation: a preliminary report. In: Mechanisms, Regulation and Special Function of Protein Synthesis in the Brain (ROBERTS, S., LAJTHA, A. & GISPEN, W. H. eds.) Elsevier/North Holland Biomed. Press, Amsterdam, 267–272.Google Scholar
  77. ZWIERS, H., WIEGANT, V. M., OESTREICHER, A. B., SCHOTMAN, P. & GISPEN, W. H. (1978a). Peptides and rat brain membrane phosphoproteins. Proc. Eur. Soc. Neurochem. Vol. 1 (NEUHOFF, V. ed.). Verlag Chemie, Weinheim, New York, 463.Google Scholar
  78. ZWIERS, H., WIEGANT, V. M., SCHOTMAN, P. & GISPEN, W. H. (1978b). ACTH-induced inhibition of endogenous rat brain protein phosphorylation in vitrot structure activity. Neurochem. Res. 3, 455–463.PubMedCrossRefGoogle Scholar
  79. ZWIERS, H., TONNAER, J., WIEGANT, V. M., SCHOTMAN, P. & GISPEN, W. H. (1979). ACTH-sensitive protein kinase from rat brain membranes. Submitted.Google Scholar

Copyright information

© Plenum Press, New York 1979

Authors and Affiliations

  • W. H. Gispen
    • 1
  • H. Zwiers
    • 1
  • V. M. Wiegant
    • 1
  • P. Schotman
    • 1
  • J. E. Wilson
    • 1
    • 2
  1. 1.Division of Molecular Neurobiology, Rudolf Magnus Institute for Pharmacology, Laboratory of Physiological Chemistry, Medical Faculty, Institute of Molecular BiologyUniversity of UtrechtUtrechtThe Netherlands
  2. 2.Department of Biochemistry and Nutrition, Medical SchoolUNCChapel HillUSA

Personalised recommendations